Suppr超能文献

层状纳米结构的 CeO 嵌入尖晶石型 MgAlO 中说明了金属氧化物和氧化物之间的关键相互作用。

Intercalation of nanostructured CeO in MgAlO spinel illustrates the critical interaction between metal oxides and oxides.

机构信息

State Key Laboratory of Physical Chemistry of Solid Surfaces and National Engineering Laboratory for Green Chemical Production of Alcohols-Ethers-Esters, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

出版信息

Nanoscale. 2018 Feb 15;10(7):3331-3341. doi: 10.1039/c7nr07825k.

Abstract

Heterogeneous catalytic oxidation arises from the prerequisite oxygen activation and transfer ability of metal oxide catalysts. Thus, engineering intercalated nanounits and heterophase metal oxide structures, and forming interstitial catalyst supports at the nanoscale level can drastically alter the catalytic performances of metal oxides. This is particularly important for ceria-based nanomaterial catalysts, where the interactions of reducible ceria (CeO) and nonreducible oxides are fundamental for the preparation of enhanced catalysts for oxygen-involved reactions. Herein, we intercalated nanostructured CeO in the bulk phase of magnesium aluminate spinel (MgAlO, referred to as MgAl), produced the interstitial effect between CeO nanoparticles and MgAl crystallites, thus boosting their oxygen transfer and activation capability. This nanoscaled intercalation engineering significantly enhanced the number and quality of tight contact points between the nanostructured CeO and MgAl units. Therefore, the oxygen storage/release capability (OSC) is exceptionally improved as revealed by various characterizations and catalytic carbon oxidation reaction. A mechanism similar to the Mars-van Krevelen process at the nanoscale level was invoked to explain the catalytic oxidation mechanisms. The reactive oxygen species of gaseous O originate formed the bulk of the as-obtained nanomaterial, where strong interactions between the CeO and MgAl components occured, which were subsequently released and diffused to the catalyst-interface at elevated temperatures. Silver supported on Ce-MgAl produced an approximately 4-fold higher concentration of active oxygen species than Ag/MgAl, and gives the optimum low-temperature oxidation at 229 °C. This study verifies the importance of the redox performance of ceria-spinel with enhanced OSC, which validates that the arrangement of contacts at the nanoscale can substantially boost the catalytic reactivity without varying the microscale structure and properties of spinel.

摘要

异相催化氧化源于金属氧化物催化剂的氧活化和转移能力的先决条件。因此,工程夹层纳米单元和异相金属氧化物结构,并在纳米尺度上形成间隙催化剂载体,可以极大地改变金属氧化物的催化性能。这对于基于氧化铈的纳米材料催化剂尤为重要,其中可还原氧化铈(CeO)和不可还原氧化物的相互作用是制备增强型氧参与反应催化剂的基础。在此,我们将纳米结构的 CeO 嵌入尖晶石(MgAlO,简称 MgAl)的体相中,在 CeO 纳米颗粒和 MgAl 晶胞之间产生间隙效应,从而增强它们的氧转移和活化能力。这种纳米级的插层工程显著增加了纳米结构 CeO 和 MgAl 单元之间紧密接触点的数量和质量。因此,通过各种表征和催化碳氧化反应,显著提高了氧存储/释放能力(OSC)。在纳米尺度上,类似于 Mars-van Krevelen 过程的机制被提出来解释催化氧化机制。气态 O 的反应性氧物种形成了所获得纳米材料的主体,CeO 和 MgAl 组分之间发生了强烈的相互作用,随后在较高温度下释放并扩散到催化剂界面。负载在 Ce-MgAl 上的银比 Ag/MgAl 产生了大约 4 倍高浓度的活性氧物种,并在 229°C 时给出了最佳的低温氧化。这项研究验证了增强 OSC 的铈尖晶石的氧化还原性能的重要性,证明了在不改变尖晶石的微观结构和性质的情况下,纳米尺度上的接触排列可以极大地提高催化反应性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验