Suppr超能文献

锂离子电池三元化合物的新家族:从复合材料到固溶体。

A New Class of Ternary Compound for Lithium-Ion Battery: from Composite to Solid Solution.

机构信息

Institute of Electronic Engineering, China Academy of Engineering Physics , Mianyang, Sichuan 621000, P. R. China.

School of Materials Science and Engineering, China University of Mining and Technology , Xuzhou 221116, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2018 Feb 14;10(6):5125-5132. doi: 10.1021/acsami.7b15494. Epub 2018 Feb 5.

Abstract

Searching for high-performance cathode materials is a crucial task to develop advanced lithium-ion batteries (LIBs) with high-energy densities for electrical vehicles (EVs). As a promising lithium-rich material, LiMnO delivers high capacity over 200 mAh g but suffers from poor structural stability and electronic conductivity. Replacing Mn ions by relatively larger Sn ions is regarded as a possible strategy to improve structural stability and thus cycling performance of LiMnO material. However, large difference in ionic radii of Mn and Sn ions leads to phase separation of LiMnO and LiSnO during high-temperature synthesis. To prepare solid-solution phase of LiMnO-LiSnO, a buffer agent of Ru, whose ionic radius is in between that of Mn and Sn ions, is introduced to assist the formation of a single solid-solution phase. The results show that the LiRuO-LiMnO-LiSnO ternary system evolves from mixed composite phases into a single solid-solution phase with increasing Ru content. Meanwhile, discharge capacity of this ternary system shows significantly increase at the transformation point which is ascribed to the improvement of Li/e transportation kinetics and anionic redox chemistry for solid-solution phase. The role of Mn/Sn molar ratio of LiRuO-LiMnO-LiSnO ternary system has also been studied. It is revealed that higher Sn content benefits cycling stability of the system because Sn ions with larger sizes could partially block the migration of Mn and Ru from transition metal layer to Li layer, thus suppressing structural transformation of the system from layered-to-spinel phase. These findings may enable a new route for exploring ternary or even quaternary lithium-rich cathode materials for LIBs.

摘要

寻找高性能阴极材料对于开发具有高能量密度的电动汽车(EV)用先进锂离子电池(LIB)至关重要。作为一种有前途的富锂材料,LiMnO 的容量超过 200mAh/g,但存在结构稳定性和电子导电性差的问题。用相对较大的 Sn 离子替代 Mn 离子被认为是提高 LiMnO 材料结构稳定性和循环性能的一种可行策略。然而,Mn 和 Sn 离子的离子半径差异很大,导致 LiMnO 和 LiSnO 在高温合成过程中发生相分离。为了制备 LiMnO-LiSnO 的固溶体相,引入了 Ru 作为缓冲剂,其离子半径介于 Mn 和 Sn 离子之间,以协助形成单一固溶体相。结果表明,随着 Ru 含量的增加,LiRuO-LiMnO-LiSnO 三元体系从混合复合相转变为单一固溶体相。同时,该三元体系的放电容量在转变点显著增加,这归因于固溶体相的 Li/e 输运动力学和阴离子氧化还原化学的改善。还研究了 LiRuO-LiMnO-LiSnO 三元体系中 Mn/Sn 摩尔比的作用。结果表明,较高的 Sn 含量有利于提高体系的循环稳定性,因为较大尺寸的 Sn 离子可以部分阻止 Mn 和 Ru 从过渡金属层向 Li 层的迁移,从而抑制体系从层状相向尖晶石相的结构转变。这些发现可能为探索用于 LIB 的三元甚至四元富锂阴极材料提供新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验