Suppr超能文献

TSAPA:鉴定植物组织特异性可变多聚腺苷酸化位点。

TSAPA: identification of tissue-specific alternative polyadenylation sites in plants.

机构信息

Department of Automation.

Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China.

出版信息

Bioinformatics. 2018 Jun 15;34(12):2123-2125. doi: 10.1093/bioinformatics/bty044.

Abstract

SUMMARY

Alternative polyadenylation (APA) is now emerging as a widespread mechanism modulated tissue-specifically, which highlights the need to define tissue-specific poly(A) sites for profiling APA dynamics across tissues. We have developed an R package called TSAPA based on the machine learning model for identifying tissue-specific poly(A) sites in plants. A feature space including more than 200 features was assembled to specifically characterize poly(A) sites in plants. The classification model in TSAPA can be customized by selecting desirable features or classifiers. TSAPA is also capable of predicting tissue-specific poly(A) sites in unannotated intergenic regions. TSAPA will be a valuable addition to the community for studying dynamics of APA in plants.

AVAILABILITY AND IMPLEMENTATION

https://github.com/BMILAB/TSAPA.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

摘要

可变多聚腺苷酸化(APA)现在作为一种广泛存在的机制正在被深入研究,这突显了在不同组织中对 APA 动态进行分析时,定义组织特异性多聚腺苷酸位点的必要性。我们基于机器学习模型开发了一个名为 TSAPA 的 R 包,用于鉴定植物中的组织特异性多聚腺苷酸位点。该模型构建了一个包含 200 多个特征的特征空间,用于专门描述植物中的多聚腺苷酸位点。TSAPA 中的分类模型可以通过选择理想的特征或分类器进行定制。TSAPA 还能够预测注释基因间区的组织特异性多聚腺苷酸位点。对于研究植物中 APA 的动态变化,TSAPA 将是该领域的一个有价值的补充。

可用性和实现

https://github.com/BMILAB/TSAPA。

补充信息

补充数据可在“Bioinformatics”在线获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验