Suppr超能文献

通过稳定同位素探测(SIP)揭示不可培养的农药降解菌。

Unraveling uncultivable pesticide degraders via stable isotope probing (SIP).

机构信息

a School of Energy and Environmental Engineering , University of Science & Technology Beijing , Beijing , PR China.

b Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants , University of Science & Technology Beijing , Beijing , PR China.

出版信息

Crit Rev Biotechnol. 2018 Nov;38(7):1025-1048. doi: 10.1080/07388551.2018.1427697. Epub 2018 Feb 1.

Abstract

Uncultivable microorganisms account for over 99% of all species on earth, playing essential roles in ecological processes such as carbon/nitrogen cycle and chemical mineralization. Their functions remain unclear in ecosystems and natural habitats, requiring cutting-edge biotechnologies for a deeper understanding. Stable isotope probing (SIP) incorporates isotope-labeled elements, e.g. C, O or N, into the cellular components of active microorganisms, serving as a powerful tool to link phylogenetic identities to their ecological functions in situ. Pesticides raise increasing attention for their persistence in the environment, leading to severe damage and risks to the ecosystem and human health. Cultivation and metagenomics help to identify either cultivable pesticide degraders or potential pesticide metabolisms within microbial communities, from various environmental media including the soil, groundwater, activated sludge, plant rhizosphere, etc. However, the application of SIP in characterizing pesticide degraders is limited, leaving considerable space in understanding the natural pesticide mineralization process. In this review, we try to comprehensively summarize the fundamental principles, successful cases and technical protocols of SIP in unraveling functional-yet-uncultivable pesticide degraders, by raising its shining lights and shadows. Particularly, this study provides deeper insights into various feasible isotope-labeled substrates in SIP studies, including pesticides, pesticide metabolites, and similar compounds. Coupled with other techniques, such as next-generation sequencing, nanoscale secondary ion mass spectrometry (NanoSIMS), single cell genomics, magnetic-nanoparticle-mediated isolation (MMI) and compound-specific isotope analysis (CSIA), SIP will significantly broaden our understanding of pesticide biodegradation process in situ.

摘要

无法培养的微生物占地球所有物种的 99%以上,它们在生态过程中发挥着重要作用,如碳/氮循环和化学矿化。它们在生态系统和自然栖息地中的功能尚不清楚,需要先进的生物技术来更深入地了解。稳定同位素探测 (SIP) 将同位素标记的元素(例如 C、O 或 N)掺入到活性微生物的细胞成分中,是将系统发育身份与其在原位的生态功能联系起来的有力工具。

农药因其在环境中的持久性而引起越来越多的关注,对生态系统和人类健康造成严重破坏和风险。培养和宏基因组学有助于识别可培养的农药降解菌或微生物群落中潜在的农药代谢途径,这些微生物来自各种环境介质,包括土壤、地下水、活性污泥、植物根际等。然而,SIP 在表征农药降解菌方面的应用有限,在理解自然农药矿化过程方面仍有很大的空间。

在这篇综述中,我们试图通过揭示 SIP 的优缺点,全面总结 SIP 阐明功能未知但不可培养的农药降解菌的基本原理、成功案例和技术方案。特别是,本研究深入探讨了 SIP 研究中各种可行的同位素标记底物,包括农药、农药代谢物和类似化合物。

SIP 与下一代测序、纳米二次离子质谱 (NanoSIMS)、单细胞基因组学、磁性纳米粒子介导的分离 (MMI) 和化合物特异性同位素分析 (CSIA) 等其他技术相结合,将显著拓宽我们对原位农药生物降解过程的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验