Chen Lili, Wang Yong, Zhou Yajing
Department of Mathematics,School of Science,Harbin Institute of Technology,Harbin 150001,China.
School of Mathematical Sciences,Heilongjiang University,Harbin 150080,China.
Genet Res (Camb). 2018 Feb 1;100:e2. doi: 10.1017/S0016672317000052.
Pleiotropy, the effect of one variant on multiple traits, is widespread in complex diseases. Joint analysis of multiple traits can improve statistical power to detect genetic variants and uncover the underlying genetic mechanism. Currently, a large number of existing methods target one common variant or only rare variants. Increasing evidence shows that complex diseases are caused by common and rare variants. Here we propose a region-based method to test both rare and common variant associated multiple traits based on variable reduction method (abbreviated as MULVR). However, in the presence of noise traits, the MULVR method may lose power, so we propose the MULVR-O method, which jointly analyses the optimal number of traits associated with genetic variants by the MULVR method, to guard against the effect of noise traits. Extensive simulation studies show that our proposed method (MULVR-O) is applied to not only multiple quantitative traits but also qualitative traits, and is more powerful than several other comparison methods in most scenarios. An application to the two genes (SHBG and CHRM3) and two phenotypes (systolic blood pressure and diastolic blood pressure) from the GAW19 dataset illustrates that our proposed methods (MULVR and MULVR-O) are feasible and efficient as a region-based method.
多效性,即一个变异对多个性状的影响,在复杂疾病中广泛存在。对多个性状进行联合分析可以提高检测遗传变异的统计功效,并揭示潜在的遗传机制。目前,大量现有方法针对的是一个常见变异或仅针对罕见变异。越来越多的证据表明,复杂疾病是由常见变异和罕见变异共同引起的。在此,我们提出一种基于区域的方法,基于变量约简方法(简称为MULVR)来检验与多个性状相关的罕见和常见变异。然而,在存在噪声性状的情况下,MULVR方法可能会失去功效,因此我们提出了MULVR - O方法,该方法通过MULVR方法联合分析与遗传变异相关的最优性状数量,以防范噪声性状的影响。广泛的模拟研究表明,我们提出的方法(MULVR - O)不仅适用于多个数量性状,也适用于质量性状,并且在大多数情况下比其他几种比较方法更具功效。对GAW19数据集中的两个基因(SHBG和CHRM3)以及两个表型(收缩压和舒张压)的应用表明,我们提出的方法(MULVR和MULVR - O)作为一种基于区域的方法是可行且高效的。