Suppr超能文献

基于变量约简方法的罕见和常见变异与多种性状的关联分析

Association analysis of rare and common variants with multiple traits based on variable reduction method.

作者信息

Chen Lili, Wang Yong, Zhou Yajing

机构信息

Department of Mathematics,School of Science,Harbin Institute of Technology,Harbin 150001,China.

School of Mathematical Sciences,Heilongjiang University,Harbin 150080,China.

出版信息

Genet Res (Camb). 2018 Feb 1;100:e2. doi: 10.1017/S0016672317000052.

Abstract

Pleiotropy, the effect of one variant on multiple traits, is widespread in complex diseases. Joint analysis of multiple traits can improve statistical power to detect genetic variants and uncover the underlying genetic mechanism. Currently, a large number of existing methods target one common variant or only rare variants. Increasing evidence shows that complex diseases are caused by common and rare variants. Here we propose a region-based method to test both rare and common variant associated multiple traits based on variable reduction method (abbreviated as MULVR). However, in the presence of noise traits, the MULVR method may lose power, so we propose the MULVR-O method, which jointly analyses the optimal number of traits associated with genetic variants by the MULVR method, to guard against the effect of noise traits. Extensive simulation studies show that our proposed method (MULVR-O) is applied to not only multiple quantitative traits but also qualitative traits, and is more powerful than several other comparison methods in most scenarios. An application to the two genes (SHBG and CHRM3) and two phenotypes (systolic blood pressure and diastolic blood pressure) from the GAW19 dataset illustrates that our proposed methods (MULVR and MULVR-O) are feasible and efficient as a region-based method.

摘要

多效性,即一个变异对多个性状的影响,在复杂疾病中广泛存在。对多个性状进行联合分析可以提高检测遗传变异的统计功效,并揭示潜在的遗传机制。目前,大量现有方法针对的是一个常见变异或仅针对罕见变异。越来越多的证据表明,复杂疾病是由常见变异和罕见变异共同引起的。在此,我们提出一种基于区域的方法,基于变量约简方法(简称为MULVR)来检验与多个性状相关的罕见和常见变异。然而,在存在噪声性状的情况下,MULVR方法可能会失去功效,因此我们提出了MULVR - O方法,该方法通过MULVR方法联合分析与遗传变异相关的最优性状数量,以防范噪声性状的影响。广泛的模拟研究表明,我们提出的方法(MULVR - O)不仅适用于多个数量性状,也适用于质量性状,并且在大多数情况下比其他几种比较方法更具功效。对GAW19数据集中的两个基因(SHBG和CHRM3)以及两个表型(收缩压和舒张压)的应用表明,我们提出的方法(MULVR和MULVR - O)作为一种基于区域的方法是可行且高效的。

相似文献

2
Joint Analysis of Multiple Traits in Rare Variant Association Studies.
Ann Hum Genet. 2016 May;80(3):162-71. doi: 10.1111/ahg.12149. Epub 2016 Mar 16.
3
Testing an optimally weighted combination of common and/or rare variants with multiple traits.
PLoS One. 2018 Jul 26;13(7):e0201186. doi: 10.1371/journal.pone.0201186. eCollection 2018.
5
Joint Analysis of Multiple Traits Using "Optimal" Maximum Heritability Test.
PLoS One. 2016 Mar 7;11(3):e0150975. doi: 10.1371/journal.pone.0150975. eCollection 2016.
6
A gene based approach to test genetic association based on an optimally weighted combination of multiple traits.
PLoS One. 2019 Aug 9;14(8):e0220914. doi: 10.1371/journal.pone.0220914. eCollection 2019.
7
A Comparison Study of Fixed and Mixed Effect Models for Gene Level Association Studies of Complex Traits.
Genet Epidemiol. 2016 Dec;40(8):702-721. doi: 10.1002/gepi.21984. Epub 2016 Jul 4.
8
MF-TOWmuT: Testing an optimally weighted combination of common and rare variants with multiple traits using family data.
Genet Epidemiol. 2021 Feb;45(1):64-81. doi: 10.1002/gepi.22355. Epub 2020 Oct 13.
9
A modified association test for rare and common variants based on affected sib-pair design.
J Theor Biol. 2019 Apr 21;467:1-6. doi: 10.1016/j.jtbi.2019.01.014. Epub 2019 Jan 29.
10
A fast and powerful aggregated Cauchy association test for joint analysis of multiple phenotypes.
Genes Genomics. 2021 Jan;43(1):69-77. doi: 10.1007/s13258-020-01034-3. Epub 2021 Jan 11.

引用本文的文献

1
CLIN_SKAT: an R package to conduct association analysis using functionally relevant variants.
BMC Bioinformatics. 2022 Oct 23;23(1):441. doi: 10.1186/s12859-022-04987-2.

本文引用的文献

1
2
Joint analysis of multiple blood pressure phenotypes in GAW19 data by using a multivariate rare-variant association test.
BMC Proc. 2016 Oct 18;10(Suppl 7):309-313. doi: 10.1186/s12919-016-0048-3. eCollection 2016.
3
Joint Analysis of Multiple Traits in Rare Variant Association Studies.
Ann Hum Genet. 2016 May;80(3):162-71. doi: 10.1111/ahg.12149. Epub 2016 Mar 16.
4
Maximizing the power of principal-component analysis of correlated phenotypes in genome-wide association studies.
Am J Hum Genet. 2014 May 1;94(5):662-76. doi: 10.1016/j.ajhg.2014.03.016. Epub 2014 Apr 17.
5
Efficient multivariate linear mixed model algorithms for genome-wide association studies.
Nat Methods. 2014 Apr;11(4):407-9. doi: 10.1038/nmeth.2848. Epub 2014 Feb 16.
6
TATES: efficient multivariate genotype-phenotype analysis for genome-wide association studies.
PLoS Genet. 2013;9(1):e1003235. doi: 10.1371/journal.pgen.1003235. Epub 2013 Jan 24.
7
A mixed-model approach for genome-wide association studies of correlated traits in structured populations.
Nat Genet. 2012 Sep;44(9):1066-71. doi: 10.1038/ng.2376. Epub 2012 Aug 19.
8
Detecting association of rare and common variants by testing an optimally weighted combination of variants.
Genet Epidemiol. 2012 Sep;36(6):561-71. doi: 10.1002/gepi.21649. Epub 2012 Jun 19.
9
MultiPhen: joint model of multiple phenotypes can increase discovery in GWAS.
PLoS One. 2012;7(5):e34861. doi: 10.1371/journal.pone.0034861. Epub 2012 May 2.
10
A gene-based test of association using canonical correlation analysis.
Bioinformatics. 2012 Mar 15;28(6):845-50. doi: 10.1093/bioinformatics/bts051. Epub 2012 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验