Suppr超能文献

相似文献

2
Joint Analysis of Multiple Traits in Rare Variant Association Studies.
Ann Hum Genet. 2016 May;80(3):162-71. doi: 10.1111/ahg.12149. Epub 2016 Mar 16.
3
Testing an optimally weighted combination of common and/or rare variants with multiple traits.
PLoS One. 2018 Jul 26;13(7):e0201186. doi: 10.1371/journal.pone.0201186. eCollection 2018.
5
Joint Analysis of Multiple Traits Using "Optimal" Maximum Heritability Test.
PLoS One. 2016 Mar 7;11(3):e0150975. doi: 10.1371/journal.pone.0150975. eCollection 2016.
6
A gene based approach to test genetic association based on an optimally weighted combination of multiple traits.
PLoS One. 2019 Aug 9;14(8):e0220914. doi: 10.1371/journal.pone.0220914. eCollection 2019.
7
A Comparison Study of Fixed and Mixed Effect Models for Gene Level Association Studies of Complex Traits.
Genet Epidemiol. 2016 Dec;40(8):702-721. doi: 10.1002/gepi.21984. Epub 2016 Jul 4.
8
MF-TOWmuT: Testing an optimally weighted combination of common and rare variants with multiple traits using family data.
Genet Epidemiol. 2021 Feb;45(1):64-81. doi: 10.1002/gepi.22355. Epub 2020 Oct 13.
9
A modified association test for rare and common variants based on affected sib-pair design.
J Theor Biol. 2019 Apr 21;467:1-6. doi: 10.1016/j.jtbi.2019.01.014. Epub 2019 Jan 29.
10
A fast and powerful aggregated Cauchy association test for joint analysis of multiple phenotypes.
Genes Genomics. 2021 Jan;43(1):69-77. doi: 10.1007/s13258-020-01034-3. Epub 2021 Jan 11.

引用本文的文献

1
CLIN_SKAT: an R package to conduct association analysis using functionally relevant variants.
BMC Bioinformatics. 2022 Oct 23;23(1):441. doi: 10.1186/s12859-022-04987-2.

本文引用的文献

1
2
Joint analysis of multiple blood pressure phenotypes in GAW19 data by using a multivariate rare-variant association test.
BMC Proc. 2016 Oct 18;10(Suppl 7):309-313. doi: 10.1186/s12919-016-0048-3. eCollection 2016.
3
Joint Analysis of Multiple Traits in Rare Variant Association Studies.
Ann Hum Genet. 2016 May;80(3):162-71. doi: 10.1111/ahg.12149. Epub 2016 Mar 16.
4
Maximizing the power of principal-component analysis of correlated phenotypes in genome-wide association studies.
Am J Hum Genet. 2014 May 1;94(5):662-76. doi: 10.1016/j.ajhg.2014.03.016. Epub 2014 Apr 17.
5
Efficient multivariate linear mixed model algorithms for genome-wide association studies.
Nat Methods. 2014 Apr;11(4):407-9. doi: 10.1038/nmeth.2848. Epub 2014 Feb 16.
6
TATES: efficient multivariate genotype-phenotype analysis for genome-wide association studies.
PLoS Genet. 2013;9(1):e1003235. doi: 10.1371/journal.pgen.1003235. Epub 2013 Jan 24.
7
A mixed-model approach for genome-wide association studies of correlated traits in structured populations.
Nat Genet. 2012 Sep;44(9):1066-71. doi: 10.1038/ng.2376. Epub 2012 Aug 19.
8
Detecting association of rare and common variants by testing an optimally weighted combination of variants.
Genet Epidemiol. 2012 Sep;36(6):561-71. doi: 10.1002/gepi.21649. Epub 2012 Jun 19.
9
MultiPhen: joint model of multiple phenotypes can increase discovery in GWAS.
PLoS One. 2012;7(5):e34861. doi: 10.1371/journal.pone.0034861. Epub 2012 May 2.
10
A gene-based test of association using canonical correlation analysis.
Bioinformatics. 2012 Mar 15;28(6):845-50. doi: 10.1093/bioinformatics/bts051. Epub 2012 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验