Suppr超能文献

TATES:用于全基因组关联研究的高效多变量基因型-表型分析。

TATES: efficient multivariate genotype-phenotype analysis for genome-wide association studies.

机构信息

Department of Functional Genomics and Department of Clinical Genetics, VU Medical Center, Amsterdam, The Netherlands.

出版信息

PLoS Genet. 2013;9(1):e1003235. doi: 10.1371/journal.pgen.1003235. Epub 2013 Jan 24.

Abstract

To date, the genome-wide association study (GWAS) is the primary tool to identify genetic variants that cause phenotypic variation. As GWAS analyses are generally univariate in nature, multivariate phenotypic information is usually reduced to a single composite score. This practice often results in loss of statistical power to detect causal variants. Multivariate genotype-phenotype methods do exist but attain maximal power only in special circumstances. Here, we present a new multivariate method that we refer to as TATES (Trait-based Association Test that uses Extended Simes procedure), inspired by the GATES procedure proposed by Li et al (2011). For each component of a multivariate trait, TATES combines p-values obtained in standard univariate GWAS to acquire one trait-based p-value, while correcting for correlations between components. Extensive simulations, probing a wide variety of genotype-phenotype models, show that TATES's false positive rate is correct, and that TATES's statistical power to detect causal variants explaining 0.5% of the variance can be 2.5-9 times higher than the power of univariate tests based on composite scores and 1.5-2 times higher than the power of the standard MANOVA. Unlike other multivariate methods, TATES detects both genetic variants that are common to multiple phenotypes and genetic variants that are specific to a single phenotype, i.e. TATES provides a more complete view of the genetic architecture of complex traits. As the actual causal genotype-phenotype model is usually unknown and probably phenotypically and genetically complex, TATES, available as an open source program, constitutes a powerful new multivariate strategy that allows researchers to identify novel causal variants, while the complexity of traits is no longer a limiting factor.

摘要

迄今为止,全基因组关联研究(GWAS)是识别导致表型变异的遗传变异的主要工具。由于 GWAS 分析通常是单变量的,因此多变量表型信息通常被简化为单个综合评分。这种做法通常会导致检测因果变异的统计能力丧失。虽然确实存在多变量基因型-表型方法,但它们仅在特殊情况下才能达到最大功效。在这里,我们提出了一种新的多变量方法,我们称之为 TATES(基于性状的关联测试,使用扩展 Simes 程序),它受到 Li 等人提出的 GATES 程序(2011 年)的启发。对于多变量性状的每个组成部分,TATES 将标准单变量 GWAS 中获得的 p 值组合起来,以获得一个基于性状的 p 值,同时校正组成部分之间的相关性。广泛的模拟,探测各种基因型-表型模型,表明 TATES 的假阳性率是正确的,并且 TATES 检测解释方差的 0.5%的因果变异的统计功效可以比基于综合评分的单变量测试的功效高 2.5-9 倍,比标准 MANOVA 的功效高 1.5-2 倍。与其他多变量方法不同,TATES 可以检测多个表型共有的遗传变异和特定于单个表型的遗传变异,即 TATES 提供了复杂性状遗传结构的更完整视图。由于实际的因果基因型-表型模型通常未知,并且可能在表型和遗传上都很复杂,因此作为开源程序提供的 TATES 构成了一种强大的新多变量策略,允许研究人员识别新的因果变异,而性状的复杂性不再是一个限制因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2df5/3554627/7d1f50fe5c93/pgen.1003235.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验