School of Physics, University of Hyderabad, Hyderabad, 500046, India.
Sci Rep. 2018 Jan 31;8(1):2002. doi: 10.1038/s41598-018-20402-4.
Electric-field applied perpendicular to the direction of propagation of paraxial beam through an optical crystal dynamically modifies the spin-orbit interaction (SOI), leading to the demonstration of controllable spin-Hall effect of light (SHEL). The electro- and piezo-optic effects of the crystal modifies the radially symmetric spatial variation in the fast-axis orientation of the crystal, resulting in a complex pattern with different topologies due to the symmetry-breaking effect of the applied field. This introduces spatially-varying Pancharatnam-Berry type geometric phase on to the paraxial beam of light, leading to the observation of SHEL in addition to the spin-to-vortex conversion. A wave-vector resolved conoscopic Mueller matrix measurement and analysis provides a first glimpse of the SHEL in the biaxial crystal, identified via the appearance of weak circular birefringence. The emergence of field-controllable fast-axis orientation of the crystal and the resulting SHEL provides a new degree of freedom for affecting and controlling the spin and orbital angular momentum of photons to unravel the rich underlying physics of optical crystals and aid in the development of active photonic spin-Hall devices.
在通过光学晶体传播的傍轴光束的传播方向上施加电场会动态地改变自旋轨道相互作用(SOI),从而实现对光的可控自旋霍尔效应(SHEL)的演示。晶体的电光和压电效应改变了晶体快轴方向的径向对称空间变化,由于外加场的对称破缺效应,导致出现具有不同拓扑结构的复杂模式。这会在傍轴光束上引入随空间变化的 Pancharatnam-Berry 型几何相位,从而除了观察到自旋到涡旋的转换之外,还能观察到 SHEL。通过对双轴晶体中的 SHEL 进行波矢分辨的锥光穆勒矩阵测量和分析,可以首次观察到,通过出现弱圆双折射来识别 SHEL。晶体的快轴方向的场可控性以及由此产生的 SHEL 为影响和控制光子的自旋和轨道角动量提供了新的自由度,以揭示光学晶体丰富的潜在物理,并有助于开发主动光子自旋霍尔器件。