Suppr超能文献

超分辨率和脉冲追踪成像揭示了囊泡运输在真菌细胞极性生长中的作用。

Superresolution and pulse-chase imaging reveal the role of vesicle transport in polar growth of fungal cells.

机构信息

Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.

Institute of Nanotechnology, KIT, Karlsruhe, Germany.

出版信息

Sci Adv. 2018 Jan 24;4(1):e1701798. doi: 10.1126/sciadv.1701798. eCollection 2018 Jan.

Abstract

Polarized growth of filamentous fungi requires continuous transport of biomolecules to the hyphal tip. To this end, construction materials are packaged in vesicles and transported by motor proteins along microtubules and actin filaments. We have studied these processes with quantitative superresolution localization microscopy of live cells expressing the photoconvertible protein mEosFP fused to the chitin synthase ChsB. ChsB is mainly located at the Spitzenkörper near the hyphal tip and produces chitin, a key component of the cell wall. We have visualized the pulsatory dynamics of the Spitzenkörper, reflecting vesicle accumulation before exocytosis and their subsequent fusion with the apical plasma membrane. Furthermore, high-speed pulse-chase imaging after photoconversion of mEosFP in a tightly focused spot revealed that ChsB is transported with two different speeds from the cell body to the hyphal tip and vice versa. Comparative analysis using motor protein deletion mutants allowed us to assign the fast movements (7 to 10 μm s) to transport of secretory vesicles by kinesin-1, and the slower ones (2 to 7 μm s) to transport by kinesin-3 on early endosomes. Our results show how motor proteins ensure the supply of vesicles to the hyphal tip, where temporally regulated exocytosis results in stepwise tip extension.

摘要

丝状真菌的极化生长需要将生物分子持续运输到菌丝尖端。为此,建筑材料被包装在囊泡中,并通过马达蛋白沿微管和肌动蛋白丝运输。我们通过对活细胞进行定量超分辨率定位显微镜研究,这些细胞表达了与几丁质合酶 ChsB 融合的光可转换蛋白 mEosFP。ChsB 主要位于菌丝尖端附近的 Spitzenkörper 中,并产生几丁质,这是细胞壁的关键组成部分。我们已经可视化了 Spitzenkörper 的脉动动力学,反映了胞吐作用前囊泡的积累及其随后与顶端质膜的融合。此外,在用强聚焦光斑对 mEosFP 进行光转换后进行高速脉冲追踪成像,揭示了 ChsB 以两种不同的速度从细胞体运输到菌丝尖端,反之亦然。使用马达蛋白缺失突变体的比较分析使我们能够将快速运动(7 到 10 μm s)分配给肌球蛋白-1驱动的分泌囊泡运输,而较慢的运动(2 到 7 μm s)则分配给早期内体上的肌球蛋白-3 运输。我们的研究结果表明了马达蛋白如何确保将囊泡供应到菌丝尖端,在那里时间调节的胞吐作用导致逐步尖端延伸。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a81/5787382/d8901c5aa76d/1701798-F1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验