Merck Institute for Pharmacometrics, Merck Serono S.A., Switzerland, a Subsidiary of Merck KGaA, Darmstadt, Germany.
Merck KGaA, Darmstadt, Germany.
CPT Pharmacometrics Syst Pharmacol. 2018 Apr;7(4):228-236. doi: 10.1002/psp4.12284. Epub 2018 Feb 21.
Mathematical models of tumor dynamics generally omit information on individual target lesions (iTLs), and consider the most important variable to be the sum of tumor sizes (TS). However, differences in lesion dynamics might be predictive of tumor progression. To exploit this information, we have developed a novel and flexible approach for the non-parametric analysis of iTLs, which integrates knowledge from signal processing and machine learning. We called this new methodology ClassIfication Clustering of Individual Lesions (CICIL). We used CICIL to assess similarities among the TS dynamics of 3,223 iTLs measured in 1,056 patients with metastatic colorectal cancer treated with cetuximab combined with irinotecan, in two phase II studies. We mainly observed similar dynamics among lesions within the same tumor site classification. In contrast, lesions in anatomic locations with different features showed different dynamics in about 35% of patients. The CICIL methodology has also been implemented in a user-friendly and efficient Java-based framework.
肿瘤动力学的数学模型通常会忽略个体靶病变(iTL)的信息,而将肿瘤大小(TS)之和视为最重要的变量。然而,病变动力学的差异可能具有预测肿瘤进展的作用。为了利用这些信息,我们开发了一种新颖而灵活的非参数分析个体病变的方法,该方法整合了信号处理和机器学习的知识。我们将这种新方法称为个体病变分类聚类(CICIL)。我们使用 CICIL 来评估在接受西妥昔单抗联合伊立替康治疗的 1,056 名转移性结直肠癌患者的 3,223 个 iTL 的 TS 动力学之间的相似性,这些患者来自两项 II 期研究。我们主要观察到同一肿瘤部位分类内的病变之间具有相似的动力学。相比之下,具有不同特征的解剖位置的病变在约 35%的患者中表现出不同的动力学。CICIL 方法也已在用户友好且高效的基于 Java 的框架中实现。