Charrier Elisabeth E, Montel Lorraine, Asnacios Atef, Delort Florence, Vicart Patrick, Gallet François, Batonnet-Pichon Sabrina, Hénon Sylvie
Université Paris Diderot, CNRS, Matière et Systèmes Complexes UMR 7057, Paris, F-75013, France.
Université Paris Diderot, CNRS, Unité de Biologie Fonctionnelle et Adaptative, UMR 8251, Paris, F-75013, France.
Biol Cell. 2018 Apr;110(4):77-90. doi: 10.1111/boc.201700040. Epub 2018 Feb 22.
The mechanical properties of cells are essential to maintain their proper functions, and mainly rely on their cytoskeleton. A lot of attention has been paid to actin filaments, demonstrating their central role in the cells mechanical properties, but much less is known about the participation of intermediate filament (IF) networks. Indeed the contribution of IFs, such as vimentin, keratins and lamins, to cell mechanics has only been assessed recently. We study here the involvement of desmin, an IF specifically expressed in muscle cells, in the rheology of immature muscle cells. Desmin can carry mutations responsible for a class of muscle pathologies named desminopathies.
In this study, using three types of cell rheometers, we assess the consequences of expressing wild-type (WT) or mutated desmin on the rheological properties of single myoblasts. We find that the mechanical properties of the cell cortex are not correlated to the quantity, nor the quality of desmin expressed. On the contrary, the overall cell stiffness increases when the amount of WT or mutated desmin polymerised in cytoplasmic networks increases. However, myoblasts become softer when the desmin network is partially depleted by the formation of aggregates induced by the expression of a desmin mutant.
We demonstrate that desmin plays a negligible role in the mechanical properties of the cell cortex but is a determinant of the overall cell stiffness. More particularly, desmin participates to the cytoplasm viscoelasticity.
Desminopathies are associated with muscular weaknesses attributed to a disorganisation of the structure of striated muscle that impairs the active force generation. The present study evidences for the first time the key role of desmin in the rheological properties of myoblasts, raising the hypothesis that desmin mutations could also alter the passive mechanical properties of muscles, thus participating to the lack of force build up in muscle tissue.
细胞的力学特性对于维持其正常功能至关重要,且主要依赖于细胞骨架。肌动蛋白丝已受到广泛关注,显示出它们在细胞力学特性中发挥核心作用,但对于中间丝(IF)网络的参与情况了解较少。实际上,诸如波形蛋白、角蛋白和核纤层蛋白等中间丝对细胞力学的贡献直到最近才得到评估。我们在此研究结蛋白(一种在肌肉细胞中特异性表达的中间丝)在未成熟肌肉细胞流变学中的作用。结蛋白可携带导致一类名为结蛋白病的肌肉疾病的突变。
在本研究中,我们使用三种类型的细胞流变仪,评估表达野生型(WT)或突变型结蛋白对单个成肌细胞流变学特性的影响。我们发现细胞皮层的力学特性与结蛋白表达的量和质量均无关联。相反,当在细胞质网络中聚合的野生型或突变型结蛋白的量增加时,细胞的整体硬度会增加。然而,当结蛋白网络因结蛋白突变体表达诱导形成聚集体而部分耗尽时,成肌细胞会变得更软。
我们证明结蛋白在细胞皮层的力学特性中作用可忽略不计,但却是细胞整体硬度的决定因素。更具体地说,结蛋白参与细胞质的粘弹性。
结蛋白病与由于横纹肌结构紊乱导致的肌肉无力相关,这会损害主动力的产生。本研究首次证明了结蛋白在成肌细胞流变学特性中的关键作用,提出了结蛋白突变也可能改变肌肉的被动力学特性,从而导致肌肉组织中力量积累不足的假说。