Suppr超能文献

利用基于基因组编码的多重报告基因检测在大肠杆菌中系统性剖析控制 σ70 启动子的序列元件。

Systematic Dissection of Sequence Elements Controlling σ70 Promoters Using a Genomically Encoded Multiplexed Reporter Assay in Escherichia coli.

机构信息

Molecular Biology Interdepartmental Doctoral Program , University of California , Los Angeles , California 90095 , United States.

Department of Molecular, Cell, and Developmental Biology , University of California , Los Angeles , California 90095 , United States.

出版信息

Biochemistry. 2019 Mar 19;58(11):1539-1551. doi: 10.1021/acs.biochem.7b01069. Epub 2018 Dec 21.

Abstract

Promoters are the key drivers of gene expression and are largely responsible for the regulation of cellular responses to time and environment. In Escherichia coli, decades of studies have revealed most, if not all, of the sequence elements necessary to encode promoter function. Despite our knowledge of these motifs, it is still not possible to predict the strength and regulation of a promoter from primary sequence alone. Here we develop a novel multiplexed assay to study promoter function in E. coli by building a site-specific genomic recombination-mediated cassette exchange system that allows for the facile construction and testing of large libraries of genetic designs integrated into precise genomic locations. We build and test a library of 10898 σ70 promoter variants consisting of all combinations of a set of eight -35 elements, eight -10 elements, three UP elements, eight spacers, and eight backgrounds. We find that the -35 and -10 sequence elements can explain approximately 74% of the variance in promoter strength within our data set using a simple log-linear statistical model. Simple neural network models explain >95% of the variance in our data set by capturing nonlinear interactions with the spacer, background, and UP elements.

摘要

启动子是基因表达的关键驱动因素,在很大程度上负责调节细胞对时间和环境的反应。在大肠杆菌中,经过几十年的研究,已经揭示了编码启动子功能所需的大多数(如果不是全部)序列元件。尽管我们了解了这些基序,但仍然不可能仅从原始序列预测启动子的强度和调控。在这里,我们通过构建一种基于基因组特异性重组介导盒交换系统的新型多重测定法来研究大肠杆菌中的启动子功能,该系统允许轻松构建和测试精确基因组位置处集成的大量遗传设计文库。我们构建并测试了一个由 10898 个 σ70 启动子变体组成的文库,这些变体由一组八个 -35 元件、八个 -10 元件、三个 UP 元件、八个间隔子和八个背景组成。我们发现,使用简单的对数线性统计模型,-35 和 -10 序列元件可以解释我们数据集内大约 74%的启动子强度变化。简单的神经网络模型通过捕捉与间隔子、背景和 UP 元件的非线性相互作用,解释了我们数据集内 >95%的方差。

相似文献

2
5
Post-initiation control by the initiation factor sigma.
Mol Microbiol. 2008 Apr;68(1):1-3. doi: 10.1111/j.1365-2958.2008.06136.x. Epub 2008 Feb 26.
8
Redefining Escherichia coli σ(70) promoter elements: -15 motif as a complement of the -10 motif.
J Bacteriol. 2011 Nov;193(22):6305-14. doi: 10.1128/JB.05947-11. Epub 2011 Sep 9.
9
Anatomy of Escherichia coli sigma70 promoters.
Nucleic Acids Res. 2007;35(3):771-88. doi: 10.1093/nar/gkl956. Epub 2006 Dec 22.
10
Isolation and characterization of mutations in region 1.2 of Escherichia coli sigma70.
Mol Microbiol. 2001 Oct;42(2):427-37. doi: 10.1046/j.1365-2958.2001.02642.x.

引用本文的文献

2
The Environment-Dependent Regulatory Landscape of the Genome.
bioRxiv. 2025 May 15:2025.05.13.653802. doi: 10.1101/2025.05.13.653802.
3
The latent cis-regulatory potential of mobile DNA in Escherichia coli.
Nat Commun. 2025 May 21;16(1):4740. doi: 10.1038/s41467-025-60023-w.
4
A high-resolution view of RNA endonuclease cleavage in Bacillus subtilis.
Nucleic Acids Res. 2025 Jan 24;53(3). doi: 10.1093/nar/gkaf030.
5
The highly rugged yet navigable regulatory landscape of the bacterial transcription factor TetR.
Nat Commun. 2024 Dec 30;15(1):10745. doi: 10.1038/s41467-024-54723-y.
6
Deciphering regulatory architectures of bacterial promoters from synthetic expression patterns.
PLoS Comput Biol. 2024 Dec 26;20(12):e1012697. doi: 10.1371/journal.pcbi.1012697. eCollection 2024 Dec.
8
Automated Design of Oligopools and Rapid Analysis of Massively Parallel Barcoded Measurements.
ACS Synth Biol. 2024 Dec 20;13(12):4218-4232. doi: 10.1021/acssynbio.4c00661. Epub 2024 Dec 6.
9
Sequence modeling and design from molecular to genome scale with Evo.
Science. 2024 Nov 15;386(6723):eado9336. doi: 10.1126/science.ado9336.
10
Fine-Tuning Gene Expression in Bacteria by Synthetic Promoters.
Methods Mol Biol. 2024;2844:179-195. doi: 10.1007/978-1-0716-4063-0_12.

本文引用的文献

2
CrY2H-seq: a massively multiplexed assay for deep-coverage interactome mapping.
Nat Methods. 2017 Aug;14(8):819-825. doi: 10.1038/nmeth.4343. Epub 2017 Jun 26.
3
Reducing DNA context dependence in bacterial promoters.
PLoS One. 2017 Apr 19;12(4):e0176013. doi: 10.1371/journal.pone.0176013. eCollection 2017.
4
Mechanism of transcription initiation and promoter escape by . RNA polymerase.
Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):E3032-E3040. doi: 10.1073/pnas.1618675114. Epub 2017 Mar 27.
5
Open complex DNA scrunching: A key to transcription start site selection and promoter escape.
Bioessays. 2017 Feb;39(2). doi: 10.1002/bies.201600193. Epub 2017 Jan 4.
6
Copy number variability of expression plasmids determined by cell sorting and Droplet Digital PCR.
Microb Cell Fact. 2016 Dec 19;15(1):211. doi: 10.1186/s12934-016-0610-8.
7
Local and global regulation of transcription initiation in bacteria.
Nat Rev Microbiol. 2016 Oct;14(10):638-50. doi: 10.1038/nrmicro.2016.103. Epub 2016 Aug 8.
8
Hard-Wired Control of Bacterial Processes by Chromosomal Gene Location.
Trends Microbiol. 2016 Oct;24(10):788-800. doi: 10.1016/j.tim.2016.06.003. Epub 2016 Jun 27.
10
Interactions between RNA polymerase and the core recognition element are a determinant of transcription start site selection.
Proc Natl Acad Sci U S A. 2016 May 24;113(21):E2899-905. doi: 10.1073/pnas.1603271113. Epub 2016 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验