Suppr超能文献

新兴研究者系列:含硫溶液中甲基汞的形态和二甲基汞的生成。

Emerging investigator series: methylmercury speciation and dimethylmercury production in sulfidic solutions.

机构信息

Grinnell College Department of Chemistry, Grinnell, Iowa 50112, USA.

出版信息

Environ Sci Process Impacts. 2018 Apr 25;20(4):584-594. doi: 10.1039/c7em00533d.

Abstract

Alkylated mercury species (monomethylmercury, MeHg, and dimethylmercury, DMeHg) exhibit significant bioaccumulation, and pose significant risks to ecosystems and human health. Although decades of research have been devoted to understanding MeHg formation and degradation, little is known about the DMeHg formation in aquatic systems. Here, we combine complementary experimental and computational approaches to examine MeHg speciation and DMeHg formation in sulfidic aqueous solutions, with an emphasis on the formation and decomposition of the binuclear bis(methylmercuric(ii)) sulfide complex (CH3Hg)2S. Experimental data indicate that the reaction 2CH3Hg+ + HS- ⇄ (CH3Hg)2S + H+ has a log K = 26.0 ± 0.2. Thus, the binuclear (CH3Hg)2S complex is likely to be the dominant MeHg species under high MeHg concentrations typically used in experimental investigations of MeHg degradation by sulfate-reducing bacteria (SRB). Our finding of a significant abiotic removal mechanism for MeHg in sulfidic solutions through the formation of relatively insoluble (CH3Hg)2S suggests careful reexamination of reported "oxidative demethylation" of MeHg by SRB and perhaps other obligate anaerobes. We provide evidence for slow decomposition of (CH3Hg)2S to DMeHg and HgS, with a first-order rate constant k = 1.5 ± 0.4 × 10-6 h-1. Quantum chemical calculations suggest that the reaction proceeds by a novel mechanism involving rearrangement of the (CH3Hg)2S complex facilitated by strong Hg-Hg interactions that activate a methyl group for intramolecular transfer. Predictions of DMeHg formation rates under a variety of field and laboratory conditions indicate that this pathway for DMeHg formation will be significant in laboratory experiments utilizing high MeHg concentrations, favoring (CH3Hg)2S formation. In natural systems with relatively high MeHg/[H2S]T ratios (the oxic/anoxic interface, for example), DMeHg production may be observed, and warrants further investigation.

摘要

烷基汞物种(一甲基汞、MeHg 和二甲基汞、DMeHg)表现出显著的生物积累性,对生态系统和人类健康构成重大风险。尽管几十年来的研究致力于了解 MeHg 的形成和降解,但对于水生系统中 DMeHg 的形成知之甚少。在这里,我们结合互补的实验和计算方法来研究硫化水溶液中 MeHg 的形态和 DMeHg 的形成,重点是双核双(甲基汞(II))硫化物配合物(CH3Hg)2S 的形成和分解。实验数据表明,反应 2CH3Hg+ + HS- ⇄ (CH3Hg)2S + H+ 的 log K = 26.0 ± 0.2。因此,在硫酸盐还原菌(SRB)降解 MeHg 的实验研究中通常使用的高 MeHg 浓度下,双核(CH3Hg)2S 配合物可能是主要的 MeHg 物种。我们发现,在硫化溶液中,通过形成相对不溶的(CH3Hg)2S,存在一种重要的非生物去除 MeHg 的机制,这表明需要仔细重新审视 SRB 和其他严格厌氧菌报告的 MeHg 的“氧化脱甲基”作用。我们提供了(CH3Hg)2S 缓慢分解为 DMeHg 和 HgS 的证据,一级速率常数 k = 1.5 ± 0.4 × 10-6 h-1。量子化学计算表明,该反应通过一种新的机制进行,涉及(CH3Hg)2S 配合物的重排,该重排由强 Hg-Hg 相互作用促进,从而激活一个甲基进行分子内转移。在各种现场和实验室条件下对 DMeHg 形成速率的预测表明,在利用高 MeHg 浓度的实验室实验中,这种 DMeHg 形成途径将非常重要,有利于(CH3Hg)2S 的形成。在 MeHg/[H2S]T 比值相对较高的天然系统中(例如,好氧/缺氧界面),可能会观察到 DMeHg 的产生,这需要进一步研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验