Suppr超能文献

海水中溶解态甲基汞的微生物汞元素生成过程

Microbial generation of elemental mercury from dissolved methylmercury in seawater.

作者信息

Lee Cheng-Shiuan, Fisher Nicholas S

机构信息

School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000.

出版信息

Limnol Oceanogr. 2019 Mar;64(2):679-693. doi: 10.1002/lno.11068. Epub 2018 Nov 8.

Abstract

Elemental mercury (Hg) formation from other mercury species in seawater results from photoreduction and microbial activity, leading to possible evasion from seawater to overlying air. Microbial conversion of monomethylmercury (MeHg) to Hg0 in seawater remains unquantified. A rapid radioassay method was developed using gamma-emitting Hg as a tracer to evaluate Hg production from Hg(II) and MeHg in the low pM range. Bacterioplankton assemblages in Atlantic surface seawater and Long Island Sound water were found to rapidly produce Hg, with production rate constants being directly related to bacterial biomass and independent of dissolved Hg(II) and MeHg concentrations. About 32% of Hg(II) and 19% of MeHg were converted to Hg in 4 d in Atlantic surface seawater containing low bacterial biomass, and in Long Island Sound water with higher bacterial biomass, 54% of Hg(II) and 8% of MeHg were transformed to Hg. Decreasing temperatures from 24°C to 4°C reduced Hg production rates cell from Hg(II) 3.3 times as much as from a MeHg source. Because Hg production rates were linearly related to microbial biomass and temperature, and microbial mercuric reductase was detected in our field samples, we inferred that microbial metabolic activities and enzymatic reactions primarily govern Hg formation in subsurface waters where light penetration is diminished.

摘要

海水中其他汞物种形成元素汞(Hg)是光还原和微生物活动的结果,这可能导致汞从海水逸散到上覆空气中。海水中一甲基汞(MeHg)向Hg0的微生物转化量仍未得到量化。我们开发了一种快速放射性测定方法,使用发射伽马射线的汞作为示踪剂,以评估低皮摩尔范围内Hg(II)和MeHg产生汞的情况。结果发现,大西洋表层海水和长岛海峡水中的浮游细菌群落能快速产生汞,其产生速率常数与细菌生物量直接相关,且与溶解的Hg(II)和MeHg浓度无关。在细菌生物量较低的大西洋表层海水中,4天内约32%的Hg(II)和19%的MeHg转化为汞;在细菌生物量较高的长岛海峡水中,54%的Hg(II)和8%的MeHg转化为汞。温度从24°C降至4°C时,Hg(II)产生汞的速率降低幅度是MeHg源的3.3倍。由于汞产生速率与微生物生物量和温度呈线性关系,且我们在野外样本中检测到了微生物汞还原酶,因此我们推断,在光穿透减弱的次表层水域中,微生物代谢活动和酶促反应是汞形成的主要控制因素。

相似文献

1
Microbial generation of elemental mercury from dissolved methylmercury in seawater.
Limnol Oceanogr. 2019 Mar;64(2):679-693. doi: 10.1002/lno.11068. Epub 2018 Nov 8.
5
Effect of salinity on mercury methylating benthic microbes and their activities in Great Salt Lake, Utah.
Sci Total Environ. 2017 Mar 1;581-582:495-506. doi: 10.1016/j.scitotenv.2016.12.157. Epub 2017 Jan 3.
6
7
Geochemical Factors Controlling Dissolved Elemental Mercury and Methylmercury Formation in Alaskan Wetlands of Varying Trophic Status.
Environ Sci Technol. 2019 Jun 4;53(11):6203-6213. doi: 10.1021/acs.est.8b06041. Epub 2019 May 15.
9
Uptake and elimination routes of inorganic mercury and methylmercury in Daphnia magna.
Environ Sci Technol. 2004 Feb 1;38(3):808-16. doi: 10.1021/es034638x.
10
Kinetics of Enzymatic Mercury Methylation at Nanomolar Concentrations Catalyzed by HgcAB.
Appl Environ Microbiol. 2019 Jun 17;85(13). doi: 10.1128/AEM.00438-19. Print 2019 Jul 1.

引用本文的文献

1
A hidden demethylation pathway removes mercury from rice plants and mitigates mercury flux to food chains.
Nat Food. 2024 Jan;5(1):72-82. doi: 10.1038/s43016-023-00910-x. Epub 2024 Jan 4.
2
Internal Dynamics and Metabolism of Mercury in Biota: A Review of Insights from Mercury Stable Isotopes.
Environ Sci Technol. 2022 Jul 5;56(13):9182-9195. doi: 10.1021/acs.est.1c08631. Epub 2022 Jun 19.
3
Fluorescence Based Comparative Sensing Behavior of the Nano-Composites of SiO and TiO towards Toxic Hg Ions.
Nanomaterials (Basel). 2021 Nov 15;11(11):3082. doi: 10.3390/nano11113082.

本文引用的文献

1
Methylmercury uptake by diverse marine phytoplankton.
Limnol Oceanogr. 2016 Sep;61(5):1626-1639. doi: 10.1002/lno.10318.
2
Factors controlling the photochemical degradation of methylmercury in coastal and oceanic waters.
Mar Chem. 2017 Nov 20;196:116-125. doi: 10.1016/j.marchem.2017.08.006. Epub 2017 Aug 14.
3
Emerging investigator series: methylmercury speciation and dimethylmercury production in sulfidic solutions.
Environ Sci Process Impacts. 2018 Apr 25;20(4):584-594. doi: 10.1039/c7em00533d.
4
Methylmercury uptake and degradation by methanotrophs.
Sci Adv. 2017 May 31;3(5):e1700041. doi: 10.1126/sciadv.1700041. eCollection 2017 May.
5
Microbial mercury methylation in Antarctic sea ice.
Nat Microbiol. 2016 Aug 1;1(10):16127. doi: 10.1038/nmicrobiol.2016.127.
6
9
Mercury Emission by the Baltic Sea: A Consequence of Cyanobacterial Activity, Photochemistry, And Low-Light Mercury Transformation.
Environ Sci Technol. 2015 Oct 6;49(19):11449-57. doi: 10.1021/acs.est.5b02204. Epub 2015 Sep 10.
10
Microbial DNA records historical delivery of anthropogenic mercury.
ISME J. 2015 Dec;9(12):2541-50. doi: 10.1038/ismej.2015.86. Epub 2015 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验