Suppr超能文献

低频稳态脑响应中的多尺度能量再分配。

Multiscale energy reallocation during low-frequency steady-state brain response.

机构信息

The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China.

School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.

出版信息

Hum Brain Mapp. 2018 May;39(5):2121-2132. doi: 10.1002/hbm.23992. Epub 2018 Feb 1.

Abstract

Traditional task-evoked brain activations are based on detection and estimation of signal change from the mean signal. By contrast, the low-frequency steady-state brain response (lfSSBR) reflects frequency-tagging activity at the fundamental frequency of the task presentation and its harmonics. Compared to the activity at these resonant frequencies, brain responses at nonresonant frequencies are largely unknown. Additionally, because the lfSSBR is defined by power change, we hypothesize using Parseval's theorem that the power change reflects brain signal variability rather than the change of mean signal. Using a face recognition task, we observed power increase at the fundamental frequency (0.05 Hz) and two harmonics (0.1 and 0.15 Hz) and power decrease within the infra-slow frequency band (<0.1 Hz), suggesting a multifrequency energy reallocation. The consistency of power and variability was demonstrated by the high correlation (r > .955) of their spatial distribution and brain-behavior relationship at all frequency bands. Additionally, the reallocation of finite energy was observed across various brain regions and frequency bands, forming a particular spatiotemporal pattern. Overall, results from this study strongly suggest that frequency-specific power and variability may measure the same underlying brain activity and that these results may shed light on different mechanisms between lfSSBR and brain activation, and spatiotemporal characteristics of energy reallocation induced by cognitive tasks.

摘要

传统的任务诱发脑激活是基于检测和估计来自平均信号的信号变化。相比之下,低频稳态脑响应 (lfSSBR) 反映了任务呈现的基本频率及其谐波的频率标记活动。与这些共振频率的活动相比,非共振频率的脑反应在很大程度上是未知的。此外,由于 lfSSBR 是由功率变化定义的,我们假设使用 Parseval 定理,即功率变化反映了脑信号的可变性,而不是平均信号的变化。使用人脸识别任务,我们观察到基本频率 (0.05 Hz) 和两个谐波 (0.1 和 0.15 Hz) 的功率增加以及亚慢频带 (<0.1 Hz) 内的功率降低,表明存在多频能量再分配。在所有频段,功率和可变性的一致性通过其空间分布和脑-行为关系的高相关性 (r > .955) 得到证明。此外,在不同的大脑区域和频率带中观察到有限能量的再分配,形成特定的时空模式。总的来说,这项研究的结果强烈表明,特定频率的功率和可变性可能测量相同的潜在脑活动,这些结果可能揭示了 lfSSBR 和大脑激活之间的不同机制,以及认知任务引起的能量再分配的时空特征。

相似文献

1
Multiscale energy reallocation during low-frequency steady-state brain response.
Hum Brain Mapp. 2018 May;39(5):2121-2132. doi: 10.1002/hbm.23992. Epub 2018 Feb 1.
2
Low frequency steady-state brain responses modulate large scale functional networks in a frequency-specific means.
Hum Brain Mapp. 2016 Jan;37(1):381-94. doi: 10.1002/hbm.23037. Epub 2015 Oct 29.
3
Neural dynamics during repetitive visual stimulation.
J Neural Eng. 2015 Dec;12(6):066017. doi: 10.1088/1741-2560/12/6/066017. Epub 2015 Oct 19.
4
Fast periodic stimulation (FPS): a highly effective approach in fMRI brain mapping.
Brain Struct Funct. 2018 Jun;223(5):2433-2454. doi: 10.1007/s00429-018-1630-4. Epub 2018 Mar 3.
5
Spatial variability of low frequency brain signal differentiates brain states.
PLoS One. 2020 Nov 12;15(11):e0242330. doi: 10.1371/journal.pone.0242330. eCollection 2020.
6
Activation in the angular gyrus and in the pSTS is modulated by face primes during voice recognition.
Hum Brain Mapp. 2017 May;38(5):2553-2565. doi: 10.1002/hbm.23540. Epub 2017 Feb 20.
7
Task-invariant brain responses to the social value of faces.
J Cogn Neurosci. 2011 Oct;23(10):2766-81. doi: 10.1162/jocn.2011.21616. Epub 2011 Jan 21.
8
Medial temporal lobe activity for recognition of recent and remote famous names: an event-related fMRI study.
Neuropsychologia. 2005;43(5):693-703. doi: 10.1016/j.neuropsychologia.2004.09.005.
9
Optical mapping of the dominant frequency of brain signal oscillations in motor systems.
Sci Rep. 2017 Nov 7;7(1):14703. doi: 10.1038/s41598-017-15046-9.
10
A steady-state visual evoked potential approach to individual face perception: effect of inversion, contrast-reversal and temporal dynamics.
Neuroimage. 2012 Nov 15;63(3):1585-600. doi: 10.1016/j.neuroimage.2012.08.033. Epub 2012 Aug 17.

引用本文的文献

2
Frequency-specific modulations for subcomponents of executive functions in the infra-slow frequency range -A combined O-tDCS and fNIRS study.
Int J Clin Health Psychol. 2025 Apr-Jun;25(2):100575. doi: 10.1016/j.ijchp.2025.100575. Epub 2025 May 6.
3
Brain mechanisms of mental processing: from evoked and spontaneous brain activities to enactive brain activity.
Psychoradiology. 2023 Jun 30;3:kkad010. doi: 10.1093/psyrad/kkad010. eCollection 2023.
4
Spatiotemporal dedifferentiation of the global brain signal topography along the adult lifespan.
Hum Brain Mapp. 2023 Dec 1;44(17):5906-5918. doi: 10.1002/hbm.26484. Epub 2023 Oct 6.
7
Spatial variability of low frequency brain signal differentiates brain states.
PLoS One. 2020 Nov 12;15(11):e0242330. doi: 10.1371/journal.pone.0242330. eCollection 2020.
8
Frequency-dependent circuits anchored in the dorsal and ventral left anterior insula.
Sci Rep. 2020 Oct 5;10(1):16394. doi: 10.1038/s41598-020-73192-z.
9
Altered Brain Signal Variability in Patients With Generalized Anxiety Disorder.
Front Psychiatry. 2019 Mar 4;10:84. doi: 10.3389/fpsyt.2019.00084. eCollection 2019.
10
Multiple Frequency Bands Analysis of Large Scale Intrinsic Brain Networks and Its Application in Schizotypal Personality Disorder.
Front Comput Neurosci. 2018 Aug 3;12:64. doi: 10.3389/fncom.2018.00064. eCollection 2018.

本文引用的文献

1
Frequency dependent hub role of the dorsal and ventral right anterior insula.
Neuroimage. 2018 Jan 15;165:112-117. doi: 10.1016/j.neuroimage.2017.10.004. Epub 2017 Oct 3.
2
Moment-to-Moment BOLD Signal Variability Reflects Regional Changes in Neural Flexibility across the Lifespan.
J Neurosci. 2017 May 31;37(22):5539-5548. doi: 10.1523/JNEUROSCI.3408-16.2017. Epub 2017 May 4.
3
Fast fMRI can detect oscillatory neural activity in humans.
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):E6679-E6685. doi: 10.1073/pnas.1608117113. Epub 2016 Oct 11.
4
Brain signal complexity rises with repetition suppression in visual learning.
Neuroscience. 2016 Jun 21;326:1-9. doi: 10.1016/j.neuroscience.2016.03.059. Epub 2016 Apr 4.
5
Brain Signal Variability Differentially Affects Cognitive Flexibility and Cognitive Stability.
J Neurosci. 2016 Apr 6;36(14):3978-87. doi: 10.1523/JNEUROSCI.2517-14.2016.
6
A multi-layer network approach to MEG connectivity analysis.
Neuroimage. 2016 May 15;132:425-438. doi: 10.1016/j.neuroimage.2016.02.045. Epub 2016 Feb 22.
7
Metastability and Coherence: Extending the Communication through Coherence Hypothesis Using A Whole-Brain Computational Perspective.
Trends Neurosci. 2016 Mar;39(3):125-135. doi: 10.1016/j.tins.2016.01.001. Epub 2016 Jan 29.
8
Diverse Phase Relations among Neuronal Rhythms and Their Potential Function.
Trends Neurosci. 2016 Feb;39(2):86-99. doi: 10.1016/j.tins.2015.12.004. Epub 2016 Jan 8.
10
Low frequency steady-state brain responses modulate large scale functional networks in a frequency-specific means.
Hum Brain Mapp. 2016 Jan;37(1):381-94. doi: 10.1002/hbm.23037. Epub 2015 Oct 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验