Brookes Matthew J, Tewarie Prejaas K, Hunt Benjamin A E, Robson Sian E, Gascoyne Lauren E, Liddle Elizabeth B, Liddle Peter F, Morris Peter G
Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
Neuroimage. 2016 May 15;132:425-438. doi: 10.1016/j.neuroimage.2016.02.045. Epub 2016 Feb 22.
Recent years have shown the critical importance of inter-regional neural network connectivity in supporting healthy brain function. Such connectivity is measurable using neuroimaging techniques such as MEG, however the richness of the electrophysiological signal makes gaining a complete picture challenging. Specifically, connectivity can be calculated as statistical interdependencies between neural oscillations within a large range of different frequency bands. Further, connectivity can be computed between frequency bands. This pan-spectral network hierarchy likely helps to mediate simultaneous formation of multiple brain networks, which support ongoing task demand. However, to date it has been largely overlooked, with many electrophysiological functional connectivity studies treating individual frequency bands in isolation. Here, we combine oscillatory envelope based functional connectivity metrics with a multi-layer network framework in order to derive a more complete picture of connectivity within and between frequencies. We test this methodology using MEG data recorded during a visuomotor task, highlighting simultaneous and transient formation of motor networks in the beta band, visual networks in the gamma band and a beta to gamma interaction. Having tested our method, we use it to demonstrate differences in occipital alpha band connectivity in patients with schizophrenia compared to healthy controls. We further show that these connectivity differences are predictive of the severity of persistent symptoms of the disease, highlighting their clinical relevance. Our findings demonstrate the unique potential of MEG to characterise neural network formation and dissolution. Further, we add weight to the argument that dysconnectivity is a core feature of the neuropathology underlying schizophrenia.
近年来已表明,区域间神经网络连接在支持健康脑功能方面至关重要。这种连接性可使用诸如脑磁图(MEG)等神经成像技术进行测量,然而电生理信号的丰富性使得全面了解情况具有挑战性。具体而言,连接性可计算为大范围不同频带内神经振荡之间的统计相互依存关系。此外,还可计算频带之间的连接性。这种全频谱网络层次结构可能有助于介导多个脑网络的同时形成,以支持当前的任务需求。然而,迄今为止,这一点在很大程度上被忽视了,许多电生理功能连接性研究孤立地处理各个频带。在此,我们将基于振荡包络的功能连接性指标与多层网络框架相结合,以便更全面地了解频率内部和频率之间的连接性。我们使用在视觉运动任务期间记录的脑磁图数据测试了这种方法,突出了β频段运动网络、γ频段视觉网络的同时和瞬时形成以及β到γ的相互作用。在测试了我们的方法之后,我们用它来证明精神分裂症患者与健康对照者在枕叶α频段连接性上的差异。我们进一步表明,这些连接性差异可预测该疾病持续症状的严重程度,突出了它们的临床相关性。我们的研究结果证明了脑磁图在表征神经网络形成和消散方面的独特潜力。此外,我们进一步支持了这样一种观点,即连接障碍是精神分裂症潜在神经病理学的一个核心特征。