University of Utah School of Medicine, Salt Lake City, Utah, United States of America.
Weill Cornell Medical College, New York, New York, United States of America.
PLoS Genet. 2018 Feb 1;14(2):e1007111. doi: 10.1371/journal.pgen.1007111. eCollection 2018 Feb.
The high-risk pedigree (HRP) design is an established strategy to discover rare, highly-penetrant, Mendelian-like causal variants. Its success, however, in complex traits has been modest, largely due to challenges of genetic heterogeneity and complex inheritance models. We describe a HRP strategy that addresses intra-familial heterogeneity, and identifies inherited segments important for mapping regulatory risk. We apply this new Shared Genomic Segment (SGS) method in 11 extended, Utah, multiple myeloma (MM) HRPs, and subsequent exome sequencing in SGS regions of interest in 1063 MM / MGUS (monoclonal gammopathy of undetermined significance-a precursor to MM) cases and 964 controls from a jointly-called collaborative resource, including cases from the initial 11 HRPs. One genome-wide significant 1.8 Mb shared segment was found at 6q16. Exome sequencing in this region revealed predicted deleterious variants in USP45 (p.Gln691* and p.Gln621Glu), a gene known to influence DNA repair through endonuclease regulation. Additionally, a 1.2 Mb segment at 1p36.11 is inherited in two Utah HRPs, with coding variants identified in ARID1A (p.Ser90Gly and p.Met890Val), a key gene in the SWI/SNF chromatin remodeling complex. Our results provide compelling statistical and genetic evidence for segregating risk variants for MM. In addition, we demonstrate a novel strategy to use large HRPs for risk-variant discovery more generally in complex traits.
高风险家系(HRP)设计是一种已确立的策略,用于发现罕见的、高度外显率的孟德尔式因果变异。然而,它在复杂性状中的成功是有限的,这主要是由于遗传异质性和复杂遗传模型的挑战。我们描述了一种 HRP 策略,该策略解决了家系内异质性,并确定了对于绘制监管风险重要的遗传片段。我们在 11 个扩展的犹他州多发性骨髓瘤(MM)HRP 中应用了这种新的共享基因组片段(SGS)方法,然后在 1063 例 MM/MGUS(未确定意义的单克隆丙种球蛋白病——MM 的前身)和 964 例对照中对 SGS 感兴趣区域进行外显子测序,这些对照来自一个共同调用的协作资源,包括来自最初的 11 个 HRP 的病例。在 6q16 处发现了一个全基因组显著的 1.8Mb 共享片段。该区域的外显子测序揭示了 USP45 中预测的有害变异(p.Gln691*和 p.Gln621Glu),该基因通过内切酶调节影响 DNA 修复。此外,在两个犹他州 HRP 中遗传的 1p36.11 处的 1.2Mb 片段,鉴定出 ARID1A 中的编码变异(p.Ser90Gly 和 p.Met890Val),这是 SWI/SNF 染色质重塑复合物中的关键基因。我们的结果提供了有说服力的统计和遗传证据,表明 MM 存在分离风险变异。此外,我们还展示了一种新策略,可用于更一般地在复杂性状中使用大型 HRP 发现风险变异。