Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH, USA.
Department of Neurology, the second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
Mol Neurodegener. 2018 Feb 1;13(1):5. doi: 10.1186/s13024-018-0238-8.
Mitochondria are the organelles responsible for energy metabolism and have a direct impact on neuronal function and survival. Mitochondrial abnormalities have been well characterized in Alzheimer Disease (AD). It is believed that mitochondrial fragmentation, due to impaired fission and fusion balance, likely causes mitochondrial dysfunction that underlies many aspects of neurodegenerative changes in AD. Mitochondrial fission and fusion proteins play a major role in maintaining the health and function of these important organelles. Mitofusion 2 (Mfn2) is one such protein that regulates mitochondrial fusion in which mutations lead to the neurological disease.
To examine whether and how impaired mitochondrial fission/fusion balance causes neurodegeneration in AD, we developed a transgenic mouse model using the CAMKII promoter to knockout neuronal Mfn2 in the hippocampus and cortex, areas significantly affected in AD.
Electron micrographs of neurons from these mice show swollen mitochondria with cristae damage and mitochondria membrane abnormalities. Over time the Mfn2 cKO model demonstrates a progression of neurodegeneration via mitochondrial morphological changes, oxidative stress response, inflammatory changes, and loss of MAP2 in dendrites, leading to severe and selective neuronal death. In this model, hippocampal CA1 neurons were affected earlier and resulted in nearly total loss, while in the cortex, progressive neuronal death was associated with decreased cortical size.
Overall, our findings indicate that impaired mitochondrial fission and fusion balance can cause many of the neurodegenerative changes and eventual neuron loss that characterize AD in the hippocampus and cortex which makes it a potential target for treatment strategies for AD.
线粒体是负责能量代谢的细胞器,对神经元的功能和存活有直接影响。线粒体异常在阿尔茨海默病(AD)中得到了很好的描述。人们认为,由于分裂和融合平衡受损导致的线粒体碎片化,可能导致线粒体功能障碍,这是 AD 中许多神经退行性变化的基础。线粒体分裂和融合蛋白在维持这些重要细胞器的健康和功能方面起着主要作用。线粒体融合蛋白 2(Mfn2)是调节线粒体融合的一种蛋白质,其突变会导致神经疾病。
为了研究线粒体分裂/融合平衡受损是否以及如何导致 AD 中的神经退行性变,我们使用 CAMKII 启动子在海马体和皮质中敲除神经元 Mfn2,建立了一种转基因小鼠模型,这些区域在 AD 中受到显著影响。
这些小鼠神经元的电子显微镜图像显示肿胀的线粒体嵴损伤和线粒体膜异常。随着时间的推移,Mfn2 cKO 模型通过线粒体形态变化、氧化应激反应、炎症变化和树突中 MAP2 的丢失,表现出神经退行性变的进展,导致严重和选择性的神经元死亡。在该模型中,海马 CA1 神经元受到的影响更早,导致几乎完全丧失,而在皮质中,进行性神经元死亡与皮质面积减小有关。
总之,我们的研究结果表明,线粒体分裂和融合平衡受损可能导致 AD 中海马体和皮质中许多神经退行性变化和最终的神经元丧失,这使其成为 AD 治疗策略的潜在靶点。