Antonelli Alessandro, Palumbo Carlotta, Veccia Alessandro, Grisanti Salvatore, Triggiani Luca, Zamboni Stefania, Furlan Maria, Simeone Claudio, Magrini Stefano, Berruti Alfredo
Unit of Urology, ASST Spedali Civili, University of Brescia, Brescia, Italy -
Unit of Urology, ASST Spedali Civili, University of Brescia, Brescia, Italy.
Minerva Urol Nefrol. 2018 Aug;70(4):370-379. doi: 10.23736/S0393-2249.18.03022-9. Epub 2018 Feb 1.
Androgen-deprivation therapy (ADT) administered in neoadjuvant setting before radical prostatectomy (RP) represents an ideal in vivo human model to test the efficacy of hormonal treatments in prostate cancer (PCa). This review summarizes the findings from published studies specifically focused on the biological effects of ADT assessed on specimens from RP. The aim is to provide a base of knowledge that might be used to design future studies on neoadjuvant therapy for PCa.
A systematic review of the literature was performed according to the PRISMA statements. Search protocol identified published studies including a detailed analysis on specimen from RP to assess the biological effects of neoadjuvant ADT. In November 2017, Medline, Embase, and Scopus databases were searched using the terms "neoadjuvant" AND ("hormone therapy" OR "androgen deprivation therapy") AND "prostate cancer" in the "Title/Abstract" fields. Effects of ADT were classified according to four pathways - suppression of cellular proliferation, induction of apoptosis, alteration of immune response and onset of hormonal refractoriness - and relative markers of response were identified.
From 1856 papers initially retrieved, 19 studies were finally selected and included into the present review. ADT was constituted by luteinizing hormone-releasing hormone (LH-RH) agonist alone in two, peripheral anti-androgen alone in one, both in 10, abiraterone acetate in one, unspecified in five. According to the above-mentioned four pathways, the following markers of response were identified: transcription of the oncogene TMPRSS2:ERG, translation of Aurora-A, coding of β1C integrin gene, translation of Ki-67, expression of nerve growth factors TrkA and p75NGFR, anti-angiogenic activity and micro-vessel density were involved into suppression of proliferation; mRNA transcription of bcl-2, expression of cleaved caspase-3 and translation of insulin growth factor binding protein 3, into induction of apoptosis; expression of IL-7 gene, programmed death-ligand 1, and increase of intra-prostatic T-cell population were related to alteration of immune response; finally, expression of heat shock protein 27 and de-differentiation of PCa to neuroendocrine cells, influenced the onset of hormonal refractoriness.
Despite a potential high interest, unexpectedly, only 19 heterogeneous studies investigated the effects of ADT through the analysis of specimens from RP. The present review summarizes the available evidences on this topic showing that ADT interferes on PCa at different levels that can be investigated by specific biological markers.
在根治性前列腺切除术(RP)前的新辅助治疗中给予雄激素剥夺疗法(ADT)是一种理想的体内人体模型,用于测试激素治疗在前列腺癌(PCa)中的疗效。本综述总结了已发表研究的结果,这些研究特别关注对RP标本评估的ADT生物学效应。目的是提供一个知识基础,可用于设计未来关于PCa新辅助治疗的研究。
根据PRISMA声明对文献进行系统综述。检索方案确定了已发表的研究,包括对RP标本进行详细分析以评估新辅助ADT的生物学效应。2017年11月,在Medline、Embase和Scopus数据库中使用“新辅助”与(“激素治疗”或“雄激素剥夺疗法”)以及“前列腺癌”在“标题/摘要”字段中进行检索。ADT的效应根据四个途径进行分类——细胞增殖抑制、凋亡诱导、免疫反应改变和激素抵抗的发生——并确定了相应的反应标志物。
从最初检索到的1856篇论文中,最终选择了19项研究纳入本综述。ADT由单独使用促黄体生成素释放激素(LH-RH)激动剂的有2项,单独使用外周抗雄激素的有1项,两者联合使用的有10项,使用醋酸阿比特龙的有1项,未明确的有5项。根据上述四个途径,确定了以下反应标志物:癌基因TMPRSS2:ERG的转录、Aurora-A的翻译、β1C整合素基因的编码、Ki-67的翻译、神经生长因子TrkA和p75NGFR的表达、抗血管生成活性和微血管密度参与增殖抑制;bcl-2的mRNA转录、裂解的半胱天冬酶-3的表达和胰岛素生长因子结合蛋白3的翻译,参与凋亡诱导;IL-7基因的表达、程序性死亡配体1以及前列腺内T细胞群体的增加与免疫反应改变有关;最后,热休克蛋白27 的表达和PCa向神经内分泌细胞的去分化,影响激素抵抗的发生。
尽管潜在关注度很高,但出乎意料的是,只有19项异质性研究通过对RP标本的分析来研究ADT的效应。本综述总结了关于该主题的现有证据,表明ADT在不同水平上干扰PCa,这些水平可通过特定的生物学标志物进行研究。