Department of Biochemistry, Genetics and Microbiology, Institute of Microbiology, Single-Molecule Biochemistry Lab, University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany.
Department for Biochemistry I, Biochemistry Centre University of Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany.
Chembiochem. 2018 Apr 16;19(8):780-783. doi: 10.1002/cbic.201700696. Epub 2018 Mar 6.
Human cells are complex entities in which molecular recognition and selection are critical for cellular processes often driven by structural changes and dynamic interactions. Biomolecules appear in different chemical states, and modifications, such as phosphorylation, affect their function. Hence, using proteins in their chemically native state in biochemical and biophysical assays is essential. Single-molecule FRET measurements allow exploration of the structure, function and dynamics of biomolecules but cannot be fully exploited for the human proteome, as a method for the site-specific coupling of organic dyes into native, non-recombinant mammalian proteins is lacking. We address this issue showing the site-specific engineering of fluorescent dyes into human proteins on the basis of bioorthogonal reactions. We show the applicability of the method to study functional and post-translationally modified proteins on the single-molecule level, among them the hitherto inaccessible human Argonaute 2.
人类细胞是复杂的实体,其中分子识别和选择对于细胞过程至关重要,这些过程通常由结构变化和动态相互作用驱动。生物分子以不同的化学状态出现,修饰(如磷酸化)会影响其功能。因此,在生化和生物物理测定中使用其化学天然状态的蛋白质是必不可少的。单分子 FRET 测量允许探索生物分子的结构、功能和动态,但不能完全用于人类蛋白质组,因为缺乏将有机染料特异性地偶联到天然非重组哺乳动物蛋白质中的方法。我们通过基于生物正交反应的将荧光染料特异性地工程化到人类蛋白质上来解决这个问题。我们展示了该方法在单分子水平上研究功能和翻译后修饰蛋白质的适用性,其中包括迄今为止无法访问的人类 Argonaute 2。