Wang Yaxing, Lu Huangjie, Dai Xing, Duan Tao, Bai Xiaojing, Cai Yawen, Yin Xuemiao, Chen Lanhua, Diwu Juan, Du Shiyu, Zhou Ruhong, Chai Zhifang, Albrecht-Schmitt Thomas E, Liu Ning, Wang Shuao
Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064, P. R. China.
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , 215123 Suzhou, P. R. China.
Inorg Chem. 2018 Feb 19;57(4):1880-1887. doi: 10.1021/acs.inorgchem.7b02681. Epub 2018 Feb 2.
The coexistence of radioactive contaminants (e.g., thorium, uranium, and their daughters) in rare earth minerals introduces significant environmental, economic, and technological hurdles in modern rare earth production. Efficient, low cost, and green decontamination strategies are therefore desired to ameliorate this problem. We report here a single-step and quantitative decontamination strategy of thorium from rare earths based on a unique periodic trend in the formation of crystalline selenite compounds across the lanthanide series, where Ce(III) is fully oxidized in situ to Ce(IV). This gives rise to a crystallization system that is highly selective to trap tetravalent f-blocks while all other trivalent lanthanides completely remain in solution when coexist. These results are bolstered by first-principles calculations of lattice energies and an examination of bonding in these compounds. This system is contrasted with typical natural and synthetic systems, where trivalent and tetravalent f-block elements often cocrystallize. The separation factors after one round of crystallization were determined from binary systems of Th(IV)/La(III), Th(IV)/Eu(III), and Th(IV)/Yb(III) to reach 2.1 × 10, 1.2 × 10, and 9 × 10, respectively. Selective crystallization of thorium from a simulated monazite composite yields a separation factor of 1.9 × 10 with nearly quantitative removal of thorium.
稀土矿物中放射性污染物(如钍、铀及其衰变产物)的共存给现代稀土生产带来了重大的环境、经济和技术障碍。因此,需要高效、低成本且环保的去污策略来改善这一问题。我们在此报告一种基于镧系元素系列中结晶亚硒酸盐化合物形成的独特周期性趋势,从稀土中一步定量去除钍的去污策略,其中Ce(III)原位完全氧化为Ce(IV)。这产生了一个结晶系统,该系统对捕获四价f区元素具有高度选择性,而所有其他三价镧系元素共存时完全保留在溶液中。这些结果得到了晶格能的第一性原理计算以及对这些化合物中键合的研究的支持。该系统与典型的天然和合成系统形成对比,在典型系统中三价和四价f区元素常常共结晶。通过Th(IV)/La(III)、Th(IV)/Eu(III)和Th(IV)/Yb(III)的二元系统确定一轮结晶后的分离因子分别达到2.1×10、1.2×10和9×10。从模拟独居石复合物中选择性结晶钍得到的分离因子为1.9×10,钍的去除几乎是定量的。