Gryca Izabela, Czerwińska Katarzyna, Machura Barbara, Chrobok Anna, Shul'pina Lidia S, Kuznetsov Maxim L, Nesterov Dmytro S, Kozlov Yuriy N, Pombeiro Armando J L, Varyan Ivetta A, Shul'pin Georgiy B
Department of Crystallography, Institute of Chemistry, University of Silesia , 9th Szkolna Street, 40-006 Katowice, Poland.
Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology , Krzywoustego 4, 44-100 Gliwice, Poland.
Inorg Chem. 2018 Feb 19;57(4):1824-1839. doi: 10.1021/acs.inorgchem.7b02684. Epub 2018 Feb 5.
Five monomeric oxovanadium(V) complexes [VO(OMe)(NO)] with the nitro or halogen substituted quinolin-8-olate ligands were synthesized and characterized using Fourier transform infrared, H and C NMR, high-resolution mass spectrometry-electrospray ionization as well as X-ray diffraction and UV-vis spectroscopy. These complexes exhibit high catalytic activity toward oxidation of inert alkanes to alkyl hydroperoxides by HO in aqueous acetonitrile with the yield of oxygenate products up to 39% and turnover number 1780 for 1 h. The experimental kinetic study, the CD and O labeled experiments, and density functional theory (DFT) calculations allowed to propose the reaction mechanism, which includes the formation of HO· radicals as active oxidizing species. The mechanism of the HO· formation appears to be different from those usually accepted for the Fenton or Fenton-like systems. The activation of HO toward homolysis occurs upon simple coordination of hydrogen peroxide to the metal center of the catalyst molecule and does not require the change of the metal oxidation state and formation of the HOO· radical. Such an activation is associated with the redox-active nature of the quinolin-8-olate ligands. The experimentally determined activation energy for the oxidation of cyclohexane with complex [VO(OCH)(5-Cl-quin)] (quin = quinolin-8-olate) is 23 ± 3 kcal/mol correlating well with the estimate obtained from the DFT calculations.
合成了5种带有硝基或卤素取代喹啉-8-醇盐配体的单体氧钒(V)配合物[VO(OMe)(NO)],并通过傅里叶变换红外光谱、氢谱和碳谱、高分辨质谱-电喷雾电离以及X射线衍射和紫外-可见光谱对其进行了表征。这些配合物在乙腈水溶液中对HO将惰性烷烃氧化为烷基氢过氧化物表现出高催化活性,含氧化合物产物的产率高达39%,1小时的周转数为1780。实验动力学研究、CD和O标记实验以及密度泛函理论(DFT)计算有助于提出反应机理,其中包括形成HO·自由基作为活性氧化物种。HO·形成的机理似乎与通常认为的芬顿或类芬顿体系不同。HO向均裂的活化是在过氧化氢与催化剂分子的金属中心简单配位时发生的,不需要金属氧化态的改变和HOO·自由基的形成。这种活化与喹啉-8-醇盐配体的氧化还原活性性质有关。用配合物[VO(OCH)(5-Cl-喹啉)](喹啉=喹啉-8-醇盐)氧化环己烷的实验测定活化能为23±3千卡/摩尔,与DFT计算得到的估计值很好地相关。