Suppr超能文献

基于连续波和化学气相沉积石墨烯的2.7μm被动调Q掺铒钇铝石榴石陶瓷激光器

Continuous-wave and chemical vapor deposition graphene-based passively Q-switched Er:YO ceramic lasers at 2.7  μm.

作者信息

Guan Xiaofeng, Zhan Linjie, Zhu Zhenwei, Xu Bin, Xu Huiying, Cai Zhiping, Cai Weiwei, Xu Xiaodong, Zhang Jian, Xu Jun

出版信息

Appl Opt. 2018 Jan 20;57(3):371-376. doi: 10.1364/AO.57.000371.

Abstract

We report on 976-nm diode-pumped Er:YO ceramic lasers in continuous-wave and passively Q-switched regimes. The maximum output power of continuous-wave laser operation is about 0.78 W with slope efficiency of about 11.8% at 2.7 μm. Passively Q-switched Er:YO ceramic laser operation with chemical vapor deposition (CVD) graphene as the saturable absorber is also demonstrated for the first time, to our knowledge. Using a monolayer CVD graphene, the achieved shortest pulse width is about 408 ns, while the shortest pulse width reduces to about 296 ns with pulse energy of 2.59 μJ and peak power of 8.77 W by using a three-layer CVD graphene. The results reveal that graphene is a very promising saturable absorber operating in the middle infrared spectral region.

摘要

我们报道了处于连续波和被动调Q模式下的976纳米二极管泵浦Er:YO陶瓷激光器。连续波激光运行的最大输出功率约为0.78瓦,在2.7微米处的斜率效率约为11.8%。据我们所知,首次展示了以化学气相沉积(CVD)石墨烯作为可饱和吸收体的被动调Q Er:YO陶瓷激光运行。使用单层CVD石墨烯时,实现的最短脉冲宽度约为408纳秒,而使用三层CVD石墨烯时,脉冲能量为2.59微焦,峰值功率为8.77瓦,最短脉冲宽度降至约296纳秒。结果表明,石墨烯是一种在中红外光谱区域运行的非常有前景的可饱和吸收体。

相似文献

2
Passively Q-switched 2 μm Tm:YAP laser based on graphene saturable absorber mirror.
Appl Opt. 2014 Aug 1;53(22):4968-71. doi: 10.1364/AO.53.004968.
5
Diode-pumped continuous wave tunable and graphene Q-switched Tm:LSO lasers.
Opt Express. 2013 Oct 21;21(21):24665-73. doi: 10.1364/OE.21.024665.
6
Graphene Q-switched Er,Yb:GdAl(BO) laser at 1550  nm.
Appl Opt. 2017 Jun 1;56(16):4745-4749. doi: 10.1364/AO.56.004745.
10
Eye-safe 1.55  μm passively Q-switched Er,Yb:GdAl3(BO3)4 diode-pumped laser.
Opt Lett. 2016 Mar 1;41(5):918-21. doi: 10.1364/OL.41.000918.

引用本文的文献

1
Indium Tin Oxide Nanowire Arrays as a Saturable Absorber for Mid-Infrared Er:CaSrF Laser.
Nanomaterials (Basel). 2022 Jan 28;12(3):454. doi: 10.3390/nano12030454.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验