Banet Matthias T, Spencer Mark F, Raynor Robert A
Appl Opt. 2018 Jan 20;57(3):465-475. doi: 10.1364/AO.57.000465.
This paper uses wave-optics and signal-to-noise models to explore the estimation accuracy of digital-holographic detection in the off-axis pupil plane recording geometry for deep-turbulence wavefront sensing. In turn, the analysis examines three important parameters: the number of pixels across the width of the focal-plane array, the window radius in the Fourier plane, and the signal-to-noise ratio. By varying these parameters, the wave-optics and signal-to-noise models quantify performance via a metric referred to as the field-estimated Strehl ratio, and the analysis leads to a method for optimal windowing of the turbulence-limited point spread function. Altogether, the results will allow future research efforts to assess the number of pixels, pixel size, pixel-well depth, and read-noise standard deviation needed from a focal-plane array when using digital-holographic detection in the off-axis pupil plane recording geometry for estimating the complex-optical field when in the presence of deep turbulence and detection noise.
本文采用波动光学和信噪比模型,探讨在离轴光瞳平面记录几何结构中进行深度湍流波前传感时,数字全息检测的估计精度。相应地,该分析考察了三个重要参数:焦平面阵列宽度上的像素数量、傅里叶平面中的窗口半径以及信噪比。通过改变这些参数,波动光学和信噪比模型通过一种称为场估计斯特列尔比的指标来量化性能,并且该分析得出了一种对湍流限制点扩散函数进行最佳加窗的方法。总之,这些结果将使未来的研究工作能够评估在存在深度湍流和检测噪声的情况下,当在离轴光瞳平面记录几何结构中使用数字全息检测来估计复光场时,焦平面阵列所需的像素数量、像素尺寸、像素阱深度和读取噪声标准偏差。