COBO Computational Bio-Organic Chemistry Bogotá, Chemistry Department, Universidad de los Andes, Cra 1 No 18A-12, 111711 Bogotá, Colombia.
Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy.
Int J Mol Sci. 2018 Feb 3;19(2):453. doi: 10.3390/ijms19020453.
DNA gyrases are enzymes that control the topology of DNA in bacteria cells. This is a vital function for bacteria. For this reason, DNA gyrases are targeted by widely used antibiotics such as quinolones. Recently, structural and biochemical investigations identified a new class of DNA gyrase inhibitors called NBTIs (i.e., novel bacterial topoisomerase inhibitors). NBTIs are particularly promising because they are active against multi-drug resistant bacteria, an alarming clinical issue. Structural data recently demonstrated that these NBTIs bind tightly to a newly identified pocket at the dimer interface of the DNA-protein complex. In the present study, we used molecular dynamics (MD) simulations and docking calculations to shed new light on the binding of NBTIs to this site. Interestingly, our MD simulations demonstrate the intrinsic flexibility of this binding site, which allows the pocket to adapt its conformation and form optimal interactions with the ligand. In particular, we examined two ligands, AM8085 and AM8191, which induced a repositioning of a key aspartate (Asp83B), whose side chain can rotate within the binding site. The conformational rearrangement of Asp83B allows the formation of a newly identified H-bond interaction with an NH on the bound NBTI, which seems important for the binding of NBTIs having such functionality. We validated these findings through docking calculations using an extended set of cognate oxabicyclooctane-linked NBTIs derivatives (~150, in total), screened against multiple target conformations. The newly identified H-bond interaction significantly improves the docking enrichment. These insights could be helpful for future virtual screening campaigns against DNA gyrase.
DNA 回旋酶是控制细菌细胞中 DNA 拓扑结构的酶。这是细菌的一项重要功能。因此,DNA 回旋酶是喹诺酮类等广泛使用的抗生素的作用靶点。最近,结构和生化研究鉴定了一类称为 NBTI(即新型细菌拓扑异构酶抑制剂)的新型 DNA 回旋酶抑制剂。NBTI 特别有前途,因为它们对多药耐药菌具有活性,这是一个令人震惊的临床问题。最近的结构数据表明,这些 NBTI 紧密结合到 DNA-蛋白质复合物二聚体界面上新鉴定的口袋中。在本研究中,我们使用分子动力学(MD)模拟和对接计算为 NBTI 与该位点的结合提供了新的见解。有趣的是,我们的 MD 模拟表明该结合位点具有固有灵活性,允许口袋适应其构象并与配体形成最佳相互作用。特别是,我们研究了两种配体 AM8085 和 AM8191,它们诱导关键天冬氨酸(Asp83B)重新定位,其侧链可以在结合位点内旋转。Asp83B 的构象重排允许与结合的 NBTI 上的一个 NH 形成新鉴定的氢键相互作用,这对于具有这种功能的 NBTI 的结合似乎很重要。我们通过使用一组扩展的同源氧杂双环辛烷连接的 NBTI 衍生物(总共约 150 个)进行对接计算来验证这些发现,这些衍生物针对多个靶标构象进行了筛选。新鉴定的氢键相互作用显著提高了对接富集度。这些见解可能有助于未来针对 DNA 回旋酶的虚拟筛选活动。