Ottomaniello Andrea, Zanotto Simone, Baldacci Lorenzo, Pitanti Alessandro, Bianco Federica, Tredicucci Alessandro
Opt Express. 2018 Feb 5;26(3):3328-3340. doi: 10.1364/OE.26.003328.
In the present article we numerically investigated the magneto-optical behaviour of a sub-wavelength structure composed by a monolayer graphene and a metallic metasurface of optical resonators. Using this hybrid graphene-metal structure, a large increase of the non-reciprocal polarization rotation of graphene can be achieved over a broad range of terahertz frequencies. We demonstrate that the symmetry of the resonator geometry plays a key role for the performance of the system: in particular, increasing the symmetry of the resonator the non-reciprocal properties can be progressively enhanced. Moreover, the possibility to exploit the metallic metasurface as a voltage gate to vary the graphene Fermi energy allows the system working point to be tuned to the desired frequency range. Another peculiar result is the achievement of a structure able to operate both in transmission and reflection with almost the same performance, but in a different frequency range of operation. The described system is hence a sub-wavelength, tunable, multifunctional, effective non-reciprocal element in the terahertz region.
在本文中,我们对由单层石墨烯和光学谐振器的金属超表面组成的亚波长结构的磁光行为进行了数值研究。利用这种石墨烯-金属混合结构,在太赫兹频率的宽范围内,可以实现石墨烯非互易偏振旋转的大幅增加。我们证明,谐振器几何结构的对称性对系统性能起着关键作用:特别是,增加谐振器的对称性可以逐渐增强非互易特性。此外,利用金属超表面作为电压门来改变石墨烯费米能量的可能性,使得系统工作点能够被调谐到所需的频率范围。另一个奇特的结果是实现了一种结构,该结构能够在透射和反射中以几乎相同的性能工作,但在不同的工作频率范围内。因此,所描述的系统是太赫兹区域中的一种亚波长、可调谐、多功能、有效的非互易元件。