Hain Christopher R, Anderson Martha C
Marshall Space Flight Center, NASA, Earth Science Office, Huntsville, AL, USA.
Hydrology Remote Sensing Laboratory, USDA-ARS, Beltsville, MD, USA.
Geophys Res Lett. 2017 Oct 16;44(19):9723-9733. doi: 10.1002/2017GL074952. Epub 2017 Oct 9.
Observations of land surface temperature (LST) are crucial for the monitoring of surface energy fluxes from satellite. Methods that require high temporal resolution LST observations (e.g., from geostationary orbit) can be difficult to apply globally because several geostationary sensors are required to attain near-global coverage (60°N to 60°S). While these LST observations are available from polar-orbiting sensors, providing global coverage at higher spatial resolutions, the temporal sampling (twice daily observations) can pose significant limitations. For example, the Atmosphere Land Exchange Inverse (ALEXI) surface energy balance model, used for monitoring evapotranspiration and drought, requires an observation of the morning change in LST - a quantity not directly observable from polar-orbiting sensors. Therefore, we have developed and evaluated a data-mining approach to estimate the mid-morning rise in LST from a single sensor (2 observations per day) of LST from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on the Aqua platform. In general, the data-mining approach produced estimates with low relative error (5 to 10%) and statistically significant correlations when compared against geostationary observations. This approach will facilitate global, near real-time applications of ALEXI at higher spatial and temporal coverage from a single sensor than currently achievable with current geostationary datasets.
陆地表面温度(LST)观测对于通过卫星监测地表能量通量至关重要。需要高时间分辨率LST观测的方法(例如来自地球静止轨道)可能难以在全球范围内应用,因为需要几个地球静止传感器才能实现近全球覆盖(北纬60°至南纬60°)。虽然这些LST观测可从极轨传感器获得,能以更高的空间分辨率提供全球覆盖,但时间采样(每天两次观测)可能会带来显著限制。例如,用于监测蒸散和干旱的大气陆地交换反演(ALEXI)地表能量平衡模型,需要观测LST的早晨变化——这是极轨传感器无法直接观测到的量。因此,我们开发并评估了一种数据挖掘方法,用于从Aqua平台上的中分辨率成像光谱仪(MODIS)传感器的单个LST传感器(每天2次观测)估计上午中段LST的上升。总体而言,与地球静止观测相比,该数据挖掘方法产生的估计值相对误差较低(5%至10%)且具有统计学上显著的相关性。这种方法将有助于在比当前地球静止数据集更高的空间和时间覆盖范围内,通过单个传感器实现ALEXI的全球近实时应用。