Suppr超能文献

使用中子伴随粒子技术的元素成像的蒙特卡罗模拟。

Monte Carlo simulations of elemental imaging using the neutron-associated particle technique.

机构信息

School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.

出版信息

Med Phys. 2018 Apr;45(4):1631-1644. doi: 10.1002/mp.12797. Epub 2018 Feb 26.

Abstract

PURPOSE

The purpose of this study is to develop and employ a Monte Carlo (MC) simulation model of associated particle neutron elemental imaging (APNEI) in order to determine the three-dimensional (3D) imaging resolution of such a system by examining relevant physical and technological parameters and to thereby begin to explore the range of clinical applicability of APNEI to fields such as medical diagnostics, intervention, and etiological research.

METHODS

The presented APNEI model was defined in MCNP by a Gaussian-distributed and isotropic surface source emitting deuterium + deuterium (DD) neutrons, iron as the target element, nine iron-containing voxels (1 cm volume each) arranged in a 3-by-3 array as the interrogated volume of interest, and finally, by high-purity germanium (HPGe) gamma-ray detectors anterior and posterior to the 9-voxel array. The MCNP f8 pulse height tally was employed in conjunction with the PTRAC particle tracking function to not only determine the signal acquired from iron inelastic scatter gamma-rays but also to quantitate each of the nine target voxels' contribution to the overall iron signal - each detected iron inelastic scatter gamma-ray being traced to the source neutron which incited its emission.

RESULTS

With the spatial, vector, and timing information of the series of events for each relevant neutron history as collected by PTRAC, realistic grayscale images of the distribution of iron concentration in the 9-voxel array were simulated in both the projective and depth dimensions. With an overall 225 ps timing resolution, 6.25 mm imaging plate pixels assumed to have well localized scintillation, and a DD neutron, Gaussian-distributed source spot with a diameter of 2 mm, projective and depth resolutions of < 1 cm and <3 cm are achievable, respectively, for iron-containing voxels on the order of 1,000 ppm Fe.

CONCLUSIONS

The imaging resolution offered by APNEI of target elements such as iron lends itself to potential applications in disease diagnosis and treatment planning (high resolution) as well as to ordnance and contraband detection (low resolution). However, experimental study beyond simulation is required to optimize the layout and electronic configuration of APNEI system components - including realistic shielding and phantom materials - for background signal reduction in order to accurately determine the detection limits and spatial resolution of iron and other elements of interest on a case-by-case basis.

摘要

目的

本研究旨在开发和运用伴随粒子中子元素成像(APNEI)的蒙特卡罗(MC)模拟模型,以通过检查相关物理和技术参数来确定此类系统的三维(3D)成像分辨率,并开始探索 APNEI 在医学诊断、介入和病因研究等领域的临床应用范围。

方法

所提出的 APNEI 模型在 MCNP 中通过高斯分布且各向同性的表面源发射氘-氘(DD)中子,以铁作为目标元素,将九个含铁体素(每个体积 1cm)排列成 3x3 阵列作为感兴趣的被检测体积,最后,在 9 个体素阵列的前后分别使用高纯锗(HPGe)伽马射线探测器。MCNP f8 脉冲高度计数与 PTRAC 粒子跟踪功能相结合,不仅可以确定从铁非弹性散射伽马射线中获得的信号,还可以量化九个目标体素中每个体素对整体铁信号的贡献——每个检测到的铁非弹性散射伽马射线都被追溯到激发其发射的源中子。

结果

通过 PTRAC 收集的与每个相关中子历史的系列事件的空间、矢量和时间信息,在投影和深度维度上模拟了 9 个体素阵列中铁浓度分布的逼真灰度图像。假设具有良好定位闪烁的 6.25mm 成像板像素和直径为 2mm 的 DD 中子高斯分布源点,对于 1000ppmFe 量级的含铁体素,可分别实现<1cm 和<3cm 的投影和深度分辨率。

结论

APNEI 对铁等目标元素的成像分辨率适用于疾病诊断和治疗计划(高分辨率)以及弹药和违禁品检测(低分辨率)等潜在应用。然而,需要进行超越模拟的实验研究,以优化 APNEI 系统组件的布局和电子配置——包括现实的屏蔽和幻影材料——以降低背景信号,以便在个案基础上准确确定铁和其他感兴趣元素的检测极限和空间分辨率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验