Suppr超能文献

运用语料库语言学和数学方法分析英国兽医对基于实践的研究的看法。

Analysing the opinions of UK veterinarians on practice-based research using corpus linguistic and mathematical methods.

作者信息

Huntley Selene J, Mahlberg Michaela, Wiegand Viola, van Gennip Yves, Yang Hui, Dean Rachel S, Brennan Marnie L

机构信息

Centre for Evidence-based Veterinary Medicine (CEVM), School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK.

School of English,University Park, Nottingham, NG7 2RD, UK.

出版信息

Prev Vet Med. 2018 Feb 1;150:60-69. doi: 10.1016/j.prevetmed.2017.11.020. Epub 2017 Dec 5.

Abstract

The use of corpus linguistic techniques and other related mathematical analyses have rarely, if ever, been applied to qualitative data collected from the veterinary field. The aim of this study was to explore the use of a combination of corpus linguistic analyses and mathematical methods to investigate a free-text questionnaire dataset collected from 3796 UK veterinarians on evidence-based veterinary medicine, specifically, attitudes towards practice-based research (PBR) and improving the veterinary knowledge base. The corpus methods of key word, concordance and collocate analyses were used to identify patterns of meanings within the free text responses. Key words were determined by comparing the questionnaire data with a wordlist from the British National Corpus (representing general English text) using cross-tabs and log-likelihood comparisons to identify words that occur significantly more frequently in the questionnaire data. Concordance and collocation analyses were used to account for the contextual patterns in which such key words occurred, involving qualitative analysis and Mutual Information Analysis (MI3). Additionally, a mathematical topic modelling approach was used as a comparative analysis; words within the free text responses were grouped into topics based on their weight or importance within each response to find starting points for analysis of textual patterns. Results generated from using both qualitative and quantitative techniques identified that the perceived advantages of taking part in PBR centred on the themes of improving knowledge of both individuals and of the veterinary profession as a whole (illustrated by patterns around the words learning, improving, contributing). Time constraints (lack of time, time issues, time commitments) were the main concern of respondents in relation to taking part in PBR. Opinions of what vets could do to improve the veterinary knowledge base focussed on the collecting and sharing of information (record, report), particularly recording and discussing clinical cases (interesting cases), and undertaking relevant continuing professional development activities. The approach employed here demonstrated how corpus linguistics and mathematical methods can help to both identify and contextualise relevant linguistic patterns in the questionnaire responses. The results of the study inform those seeking to coordinate PBR initiatives about the motivators of veterinarians to participate in such initiatives and what concerns need to be addressed. The approach used in this study demonstrates a novel way of analysing textual data in veterinary research.

摘要

语料库语言学技术及其他相关数学分析方法即便曾被应用于从兽医领域收集的定性数据,其应用频率也极低。本研究旨在探讨结合语料库语言学分析与数学方法,对从3796名英国兽医处收集的关于循证兽医学的自由文本问卷数据集进行调查,具体而言,是关于对基于实践的研究(PBR)的态度以及改善兽医知识库的情况。关键词、一致性和搭配分析等语料库方法被用于识别自由文本回复中的意义模式。通过使用交叉表和对数似然比较,将问卷数据与英国国家语料库(代表一般英语文本)中的词表进行比较,以确定在问卷数据中出现频率显著更高的词,从而确定关键词。一致性和搭配分析用于解释这些关键词出现的上下文模式,包括定性分析和互信息分析(MI3)。此外,采用数学主题建模方法作为对比分析;自由文本回复中的词根据其在每个回复中的权重或重要性被分组为主题,以找到文本模式分析的起点。使用定性和定量技术得出的结果表明,参与PBR的感知优势集中在提高个人以及整个兽医行业知识这两个主题上(以围绕学习、改善、贡献等词的模式为例)。时间限制(时间不足、时间问题、时间投入)是受访者参与PBR的主要担忧。关于兽医为改善兽医知识库可采取的措施的意见集中在信息的收集和共享(记录、报告)上,特别是记录和讨论临床病例(有趣的病例),以及开展相关的持续专业发展活动。这里采用的方法展示了语料库语言学和数学方法如何有助于识别问卷回复中的相关语言模式并将其置于上下文之中。该研究结果为那些寻求协调PBR倡议的人提供了有关兽医参与此类倡议的动机以及需要解决哪些问题的信息。本研究中使用的方法展示了一种在兽医研究中分析文本数据 的新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验