Department of Medicinal Chemistry, IMED RIA, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden.
Department of Medicinal Chemistry, IMED RIA, AstraZeneca R&D Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden.
J Inorg Biochem. 2018 Apr;181:28-40. doi: 10.1016/j.jinorgbio.2018.01.009. Epub 2018 Jan 10.
Nitric oxide (NO·) is a messenger molecule with diverse physiological roles including host defense, neurotransmission and vascular function. The synthesis of NO· from l-arginine is catalyzed by NO-synthases and occurs in two steps through the intermediary N-hydroxy-l-arginine (NHA). In both steps the P450-like reaction cycle is coupled with the redox cycle of the cofactor tetrahydrobiopterin (HB). The mechanism of the second step is studied by Density Functional Theory calculations to ascertain the canonical sequence of proton and electron transfer (PT and ET) events. The proposed mechanism is controlled by the interplay of two electron donors, HB and NHA. Consistent with experimental data, the catalytic cycle proceeds through the ferric-hydroperoxide complex (Cpd 0) and the following aqua-ferriheme resting state, and involves interim partial oxidation of HB. The mechanism starts with formation of Cpd 0 from the ferrous-dioxy reactant complex by PT from the C-ring heme propionate coupled with hole transfer to HB through the highest occupied π-orbital of NHA as a bridge. This enables PT from NHA· to the proximal oxygen leading to the shallow ferriheme-HO oxidant. Subsequent Fenton-like peroxide bond cleavage triggered by ET from the NHA-derived iminoxy-radical leads to the protonated Cpd II diradicaloid singlet stabilized by spin delocalization in HB, and the closed-shell coordination complex of HO with iminoxy-cation. The complex is converted to the transient C-adduct, which releases intended products upon PT to the ferriheme-HO complex coupled with ET to the HB·. Deferred ET from the substrate or undue ET from/to the cofactor leads to side products.
一氧化氮(NO·)是一种信使分子,具有多种生理作用,包括宿主防御、神经递质传递和血管功能。L-精氨酸的 NO·合成由 NO 合酶催化,通过中间体 N-羟基-L-精氨酸(NHA)分两步进行。在这两个步骤中,P450 样反应循环与辅酶四氢生物蝶呤(HB)的氧化还原循环偶联。通过密度泛函理论计算研究第二步的机制,以确定质子和电子转移(PT 和 ET)事件的典型序列。所提出的机制受两个电子供体 HB 和 NHA 的相互作用控制。与实验数据一致,催化循环通过铁过氧化物配合物(Cp d0)和随后的水合铁血红素静止状态进行,并且涉及 HB 的部分氧化。该机制由从亚铁-双氧反应物配合物通过 C 环血红素丙酸盐的 PT 从 Cpd 0 开始形成,与通过 NHA 的最高占据π轨道作为桥接的 HB 中的空穴转移耦合,从而使 NHA·向近端氧的 PT 成为可能,导致浅铁血红素-HO 氧化剂。随后,由 NHA 衍生的亚氨基自由基引发的 Fenton 型过氧化物键断裂导致 ET 引发的质子化 Cpd II 双自由基单重态,在 HB 中通过自旋离域稳定,以及 HO 与亚氨基阳离子的闭壳配位络合物。该络合物转化为瞬态 C-加合物,在与 HB·的 ET 耦合的同时向铁血红素-HO 配合物的 PT 释放预期产物。从底物或辅酶的延迟 ET 或过度 ET 会导致副产物。