State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing 210023, China.
State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China.
Mol Plant. 2018 May 7;11(5):678-690. doi: 10.1016/j.molp.2018.01.006. Epub 2018 Feb 1.
Asparagine (Asn/N)-linked glycans are important for protein folding, trafficking, and endoplasmic reticulum-associated degradation in eukaryotes. The maturation of glycoproteins involves the trimming of mannosyl residues by mannosidases and addition of other sugar molecules to three-branched N-glycans in the Golgi. However, the biological importance of Golgi-mediated mannose trimming is not fully understood. Here, we show that abolishment of two functionally redundant mannosidases, MNS1 and MNS2, responsible for α-1,2-mannose trimming on the A and C branches of plant N-glycans lead to severe root growth inhibition under salt stress conditions in Arabidopsis. In contrast, mutants with defects in the biosynthesis of the oligosaccharide precursor displayed enhanced salt tolerance in the absence of mannose trimming. However, mutation in EBS3, which is required for the formation of the branched N-glycan precursor, suppressed the salt-sensitive phenotype of mns1 mns2 double mutant. Interestingly, we observed that cellulose biosynthesis was compromised in mns1 mns2 roots under high salinity. Consistently, abundance of a membrane anchored endo-β-1,4-endoglucanase (RSW2/KOR) that plays a key role in cellulose biosynthesis and its mutant variant rsw2-1 were modulated by α-1,2-mannose trimming under salt stress. Overexpression of RSW2 could partially rescue the salt-sensitive phenotype of mns1 mns2. Taken together, these results suggest that MNS1/2-mediated mannose trimming of N-glycans is crucial in modulating glycoprotein abundance to withstand salt stress in plants.
天冬酰胺(Asn/N)连接的聚糖对于真核生物中的蛋白质折叠、运输和内质网相关降解很重要。糖蛋白的成熟涉及甘露糖苷酶对甘露糖残基的修剪,以及在高尔基体中向三分支 N-聚糖添加其他糖分子。然而,高尔基体介导的甘露糖修剪的生物学重要性尚未完全理解。在这里,我们表明,负责植物 N-聚糖 A 和 C 分支上α-1,2-甘露糖修剪的两种功能冗余的甘露糖苷酶 MNS1 和 MNS2 的缺失会导致拟南芥在盐胁迫条件下根生长严重受到抑制。相比之下,在没有甘露糖修剪的情况下,前体寡糖生物合成有缺陷的突变体表现出增强的耐盐性。然而,EBS3 的突变,其是形成分支 N-聚糖前体所必需的,抑制了 mns1 mns2 双突变体的盐敏感表型。有趣的是,我们观察到在高盐度下 mns1 mns2 根中的纤维素生物合成受损。一致地,在盐胁迫下,膜锚定的内-β-1,4-内切葡聚糖酶(RSW2/KOR)的丰度受到 α-1,2-甘露糖修剪的调节,它在纤维素生物合成中起着关键作用,其突变变体 rsw2-1 也是如此。RSW2 的过表达可以部分挽救 mns1 mns2 的盐敏感表型。总之,这些结果表明,MNS1/2 介导的 N-聚糖甘露糖修剪对于调节糖蛋白丰度以在植物中耐受盐胁迫至关重要。