College of Life Sciences, Shandong Agricultural University, Taian, Shandong, PR China.
National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, Shandong, PR China.
Nat Commun. 2024 Aug 5;15(1):6630. doi: 10.1038/s41467-024-50720-3.
Unfavourable conditions, such as prolonged drought and high salinity, pose a threat to the survival and agricultural yield of plants. The phytohormone ABA plays a key role in the regulation of plant stress adaptation and is often maintained at high levels for extended periods. While much is known about ABA signal perception and activation in the early signalling stage, the molecular mechanism underlying desensitization of ABA signalling remains largely unknown. Here we demonstrate that in the endoplasmic reticulum (ER)-Golgi network, the key regulators of ABA signalling, SnRK2.2/2.3, undergo N-glycosylation, which promotes their redistribution from the nucleus to the peroxisomes in Arabidopsis roots and influences the transcriptional response in the nucleus during prolonged ABA signalling. On the peroxisomal membrane, SnRK2s can interact with glucose-6-phosphate (G6P)/phosphate translocator 1 (GPT1) to maintain NADPH homeostasis through increased activity of the peroxisomal oxidative pentose phosphate pathway (OPPP). The resulting maintenance of NADPH is essential for the modulation of hydrogen peroxide (HO) accumulation, thereby relieving ABA-induced root growth inhibition. The subcellular dynamics of SnRK2s, mediated by N-glycosylation suggest that ABA responses transition from transcriptional regulation in the nucleus to metabolic processes in the peroxisomes, aiding plants in adapting to long-term environmental stress.
不利条件,如长期干旱和高盐度,对植物的生存和农业产量构成威胁。植物激素 ABA 在调节植物应激适应中起着关键作用,通常在很长一段时间内保持高水平。虽然人们对 ABA 信号感知和早期信号转导阶段的激活有了很多了解,但 ABA 信号脱敏的分子机制在很大程度上仍然未知。在这里,我们证明在内质网(ER)-高尔基体网络中,ABA 信号的关键调节因子 SnRK2.2/2.3 发生 N-糖基化,这促进了它们在拟南芥根中的从核到过氧化物酶体的重新分布,并影响了长时间 ABA 信号传导过程中核内的转录反应。在过氧化物酶体膜上,SnRK2 可以与葡萄糖-6-磷酸(G6P)/磷酸转运蛋白 1(GPT1)相互作用,通过增加过氧化物酶体氧化戊糖磷酸途径(OPPP)的活性来维持 NADPH 稳态。由此产生的 NADPH 维持对于调节过氧化氢(HO)积累至关重要,从而缓解 ABA 诱导的根生长抑制。SnRK2 的亚细胞动力学,由 N-糖基化介导,表明 ABA 反应从核内的转录调控过渡到过氧化物酶体中的代谢过程,帮助植物适应长期环境压力。