Suppr超能文献

相似文献

1
CTCF-Induced Circular DNA Complexes Observed by Atomic Force Microscopy.
J Mol Biol. 2018 Mar 16;430(6):759-776. doi: 10.1016/j.jmb.2018.01.012. Epub 2018 Jan 31.
3
Dynamic Nature of CTCF Tandem 11 Zinc Fingers in Multivalent Recognition of DNA As Revealed by NMR Spectroscopy.
J Phys Chem Lett. 2018 Jul 19;9(14):4020-4028. doi: 10.1021/acs.jpclett.8b01440. Epub 2018 Jul 6.
4
CTCF mediates chromatin looping via N-terminal domain-dependent cohesin retention.
Proc Natl Acad Sci U S A. 2020 Jan 28;117(4):2020-2031. doi: 10.1073/pnas.1911708117. Epub 2020 Jan 14.
5
LATS kinase-mediated CTCF phosphorylation and selective loss of genomic binding.
Sci Adv. 2020 Feb 19;6(8):eaaw4651. doi: 10.1126/sciadv.aaw4651. eCollection 2020 Feb.
6
Structures of CTCF-DNA complexes including all 11 zinc fingers.
Nucleic Acids Res. 2023 Sep 8;51(16):8447-8462. doi: 10.1093/nar/gkad594.
7
Structure-function relationships explain CTCF zinc finger mutation phenotypes in cancer.
Cell Mol Life Sci. 2021 Dec;78(23):7519-7536. doi: 10.1007/s00018-021-03946-z. Epub 2021 Oct 16.
9
RNA Interactions Are Essential for CTCF-Mediated Genome Organization.
Mol Cell. 2019 Nov 7;76(3):412-422.e5. doi: 10.1016/j.molcel.2019.08.015. Epub 2019 Sep 12.
10
The CTCF insulator protein forms an unusual DNA structure.
BMC Mol Biol. 2010 Dec 21;11:101. doi: 10.1186/1471-2199-11-101.

引用本文的文献

2
Comprehensive profiling of extrachromosomal circular DNAs in colorectal cancer progression.
Sci Rep. 2024 Nov 18;14(1):28519. doi: 10.1038/s41598-024-70455-x.
4
G-quadruplexes associated with R-loops promote CTCF binding.
Mol Cell. 2023 Sep 7;83(17):3064-3079.e5. doi: 10.1016/j.molcel.2023.07.009. Epub 2023 Aug 7.
5
Single-molecule imaging of genome maintenance proteins encountering specific DNA sequences and structures.
DNA Repair (Amst). 2023 Aug;128:103528. doi: 10.1016/j.dnarep.2023.103528. Epub 2023 Jun 24.
7
High Sensitivity Profiling of Chromatin Structure by MNase-SSP.
Cell Rep. 2019 Feb 26;26(9):2465-2476.e4. doi: 10.1016/j.celrep.2019.02.007.
8
Organizational principles of 3D genome architecture.
Nat Rev Genet. 2018 Dec;19(12):789-800. doi: 10.1038/s41576-018-0060-8.

本文引用的文献

1
Structural Basis for the Versatile and Methylation-Dependent Binding of CTCF to DNA.
Mol Cell. 2017 Jun 1;66(5):711-720.e3. doi: 10.1016/j.molcel.2017.05.004. Epub 2017 May 18.
2
DNA bridging and looping by HMO1 provides a mechanism for stabilizing nucleosome-free chromatin.
Nucleic Acids Res. 2014 Aug;42(14):8996-9004. doi: 10.1093/nar/gku635. Epub 2014 Jul 24.
4
CTCF: an architectural protein bridging genome topology and function.
Nat Rev Genet. 2014 Apr;15(4):234-46. doi: 10.1038/nrg3663. Epub 2014 Mar 11.
6
A genome-wide map of CTCF multivalency redefines the CTCF code.
Cell Rep. 2013 May 30;3(5):1678-1689. doi: 10.1016/j.celrep.2013.04.024. Epub 2013 May 23.
8
A role for CTCF and cohesin in subtelomere chromatin organization, TERRA transcription, and telomere end protection.
EMBO J. 2012 Nov 5;31(21):4165-78. doi: 10.1038/emboj.2012.266. Epub 2012 Sep 25.
9
Comprehensive identification and annotation of cell type-specific and ubiquitous CTCF-binding sites in the human genome.
PLoS One. 2012;7(7):e41374. doi: 10.1371/journal.pone.0041374. Epub 2012 Jul 19.
10
Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages.
Cell. 2012 Jan 20;148(1-2):335-48. doi: 10.1016/j.cell.2011.11.058. Epub 2012 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验