Toxicology Program, North Carolina State University, Raleigh, NC, USA.
Toxicology Program, North Carolina State University, Raleigh, NC, USA; Physics Department, North Carolina State University, Raleigh, NC, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.
DNA Repair (Amst). 2023 Aug;128:103528. doi: 10.1016/j.dnarep.2023.103528. Epub 2023 Jun 24.
DNA repair pathways are tightly regulated processes that recognize specific hallmarks of DNA damage and coordinate lesion repair through discrete mechanisms, all within the context of a three-dimensional chromatin landscape. Dysregulation or malfunction of any one of the protein constituents in these pathways can contribute to aging and a variety of diseases. While the collective action of these many proteins is what drives DNA repair on the organismal scale, it is the interactions between individual proteins and DNA that facilitate each step of these pathways. In much the same way that ensemble biochemical techniques have characterized the various steps of DNA repair pathways, single-molecule imaging (SMI) approaches zoom in further, characterizing the individual protein-DNA interactions that compose each pathway step. SMI techniques offer the high resolving power needed to characterize the molecular structure and functional dynamics of individual biological interactions on the nanoscale. In this review, we highlight how our lab has used SMI techniques - traditional atomic force microscopy (AFM) imaging in air, high-speed AFM (HS-AFM) in liquids, and the DNA tightrope assay - over the past decade to study protein-nucleic acid interactions involved in DNA repair, mitochondrial DNA replication, and telomere maintenance. We discuss how DNA substrates containing specific DNA sequences or structures that emulate DNA repair intermediates or telomeres were generated and validated. For each highlighted project, we discuss novel findings made possible by the spatial and temporal resolution offered by these SMI techniques and unique DNA substrates.
DNA 修复途径是严格调控的过程,它能识别 DNA 损伤的特定特征,并通过离散的机制协调损伤修复,所有这些都在三维染色质景观的背景下进行。这些途径中任何一种蛋白质成分的失调或功能障碍都可能导致衰老和各种疾病。虽然这些蛋白质的集体作用推动了在机体水平上的 DNA 修复,但正是单个蛋白质与 DNA 之间的相互作用促进了这些途径的每一步。就像集合生化技术已经描述了 DNA 修复途径的各个步骤一样,单分子成像 (SMI) 方法更进一步,描述了组成每个途径步骤的单个蛋白质-DNA 相互作用。SMI 技术提供了在纳米尺度上表征单个生物相互作用的分子结构和功能动力学所需的高分辨率。在这篇综述中,我们强调了我们的实验室在过去十年中如何使用 SMI 技术——传统的原子力显微镜 (AFM) 在空气中成像、高速 AFM (HS-AFM) 在液体中成像,以及 DNA 钢索实验——来研究 DNA 修复、线粒体 DNA 复制和端粒维持中涉及的蛋白质-核酸相互作用。我们讨论了如何生成和验证包含模拟 DNA 修复中间体或端粒的特定 DNA 序列或结构的 DNA 底物。对于每个突出的项目,我们讨论了这些 SMI 技术提供的空间和时间分辨率以及独特的 DNA 底物所带来的新发现。