Suppr超能文献

进一步了解关于半球形单细胞和细胞片在电极上的电特性的知识。

Furthering the state of knowledge on the electric properties of hemi-ellipsoidal single cells and cell patches on electrodes.

机构信息

University of Rostock, Department of Biophysics, Gertrudenstr. 11a, 18057 Rostock, Germany.

University of Rostock, Department of Biophysics, Gertrudenstr. 11a, 18057 Rostock, Germany.

出版信息

Biosens Bioelectron. 2018 May 15;105:166-172. doi: 10.1016/j.bios.2018.01.042. Epub 2018 Jan 30.

Abstract

The impedance of electrodes with adherent biological cells correlates with cell viability and proliferation. To model this correlation, we exploited the idea that the introduction of a highly conductive layer into the equatorial equipotential slice of a system with an oriented, freely suspended, single ellipsoidal cell may split the system into mirror-symmetrical halves without changing the field distribution. Each half possesses half of the system's impedance and contains a hemiellipsoidal cell attached to the conductive layer, which can be considered a bottom electrode. For a hemiellipsoidal adherent cell model (ACM) with standard electrical properties for the external and cellular media, the assumption of a bottom membrane and a subcellular cleft in the 100 nm range, as found in adherent cells, changed the potential distribution over a one-% range up to frequencies of 1 MHz. For simplicity, potential distributions for slices of spheroidal objects can be numerically calculated in 2D. The 2D distributions can be converted into three dimensions using simplified equations for the influential radii of spheroids. After the ACM approach was expanded to adherent cell patch models (APMs), the feasibility of our model modifications was tested using two criteria: the constancy of the equipotential plane touching the poles of ACMs or APMs and a comparison of the impedance, which could be numerically calculated from the overall current between the bottom electrode and a plane-parallel counter-electrode, with the impedance of the suspension obtained from Maxwell-Wagner's mixing equation applied to hemiellipsoidal cells.

摘要

具有附着生物细胞的电极的阻抗与细胞活力和增殖相关。为了模拟这种相关性,我们利用了这样一种想法,即向具有定向的、自由悬浮的单个椭圆形细胞的赤道等位面引入高导电性层,可以将系统分成镜像对称的两半,而不会改变场分布。每个半部分都具有系统阻抗的一半,并包含附着在导电层上的半椭圆形细胞,可以将其视为底电极。对于具有外部和细胞介质标准电特性的半椭圆形附着细胞模型 (ACM),假设存在底膜和亚细胞裂隙,范围在 100nm 左右,如附着细胞中发现的那样,在 1MHz 频率范围内,电位分布变化了一个百分点。为了简单起见,可以在 2D 中数值计算球形物体切片的电位分布。可以使用简化的椭球体影响半径方程将 2D 分布转换为三维。在将 ACM 方法扩展到附着细胞贴附模型 (APM) 后,使用两个标准来测试我们的模型修改的可行性:接触 ACM 或 APM 两极的等位面保持不变,以及从底电极和平面平行的电极之间的总电流计算得出的阻抗与应用于半椭圆形细胞的 Maxwell-Wagner 混合方程得出的悬浮液阻抗进行比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验