Suppr超能文献

基于下一代测序 mRNA 数据预测污渍来源。

Predicting the origin of stains from next generation sequencing mRNA data.

机构信息

Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland.

Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland.

出版信息

Forensic Sci Int Genet. 2018 May;34:37-48. doi: 10.1016/j.fsigen.2018.01.001. Epub 2018 Jan 6.

Abstract

We used our previously published NGS mRNA approach for body fluid identification to analyse 183 body fluids/tissues, including mock casework samples. The resulting data set was used to build a probabilistic model that predicts the origin of a stain. Our approach uses partial least squares followed by linear discriminant analysis to classify samples into six commonly occurring forensic body fluids. The model differs from the ones previously suggested in that it incorporates quantitative information (NGS read counts) rather than just presence/absence of markers. The suggested approach also allows for visualisation of important markers and their correlation with the different body fluids. We compared our model to previously published methods to show that the inclusion of read count information improves the prediction. Finally, we applied the model to mixed body fluid samples to test its ability to identify the individual components in a mixture.

摘要

我们使用先前发表的基于 NGS mRNA 的体液识别方法分析了 183 种体液/组织,包括模拟案例样本。所得数据集用于构建一个概率模型,预测污渍的来源。我们的方法使用偏最小二乘法(PLS) followed by 线性判别分析(linear discriminant analysis)将样本分类为六种常见的法医体液。该模型与之前提出的模型不同,因为它包含定量信息(NGS 读计数),而不仅仅是标记物的存在/不存在。所提出的方法还允许可视化重要标记物及其与不同体液的相关性。我们将我们的模型与先前发表的方法进行了比较,以证明包含读取计数信息可以提高预测准确性。最后,我们将模型应用于混合体液样本,以测试其识别混合物中各个成分的能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验