Suppr超能文献

基于模型的实验室研究观测误差解决方案。

A model-based solution for observational errors in laboratory studies.

机构信息

Marine Mammal Laboratory, Alaska Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA.

Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA.

出版信息

Mol Ecol Resour. 2018 May;18(3):580-589. doi: 10.1111/1755-0998.12765. Epub 2018 Feb 24.

Abstract

Molecular techniques for detecting microorganisms, macroorganisms and infectious agents are susceptible to false-negative and false-positive errors. If left unaddressed, these observational errors may yield misleading inference concerning occurrence, prevalence, sensitivity, specificity and covariate relationships. Occupancy models are widely used to account for false-negative errors and more recently have even been used to address false-positive errors, too. Current modelling options assume false-positive errors only occur in truly negative samples, an assumption that yields biased inference concerning detection because a positive sample could be classified as such not because the target agent was successfully detected, but rather due to a false-positive test result. We present an extension to the occupancy modelling framework that allows false-positive errors in both negative and positive samples, thereby providing unbiased inference concerning occurrence and detection, as well as reliable conclusions about the efficacy of sampling designs, handling protocols and diagnostic tests. We apply the model to simulated data, showing that it recovers known parameters and outperforms other approaches that are commonly used when confronted with observation errors. We then apply the model to an experimental data set on Batrachochytrium dendrobatidis, a pathogenic fungus that is implicated in the global decline or extinction of hundreds of amphibian species. The model-based approach we present is not only useful for obtaining reliable inference when data are contaminated with observational errors, but also eliminates the need for establishing arbitrary thresholds or decision rules that have hidden and unintended consequences.

摘要

用于检测微生物、大型生物和传染病原体的分子技术容易出现假阴性和假阳性错误。如果不加以解决,这些观测错误可能会对发生、流行、敏感性、特异性和协变量关系的推断产生误导。占据模型被广泛用于解释假阴性错误,最近甚至被用于解决假阳性错误。当前的建模选项假设假阳性错误仅发生在真正的阴性样本中,这种假设会对检测产生有偏差的推断,因为阳性样本被分类为阳性不是因为目标代理被成功检测到,而是因为假阳性的测试结果。我们提出了一种扩展的占据模型框架,允许在阴性和阳性样本中出现假阳性错误,从而对发生和检测提供无偏推断,并对采样设计、处理协议和诊断测试的效果得出可靠的结论。我们将模型应用于模拟数据,表明它可以恢复已知参数,并且优于在遇到观测误差时常用的其他方法。然后,我们将模型应用于关于蛙壶菌的实验数据集,蛙壶菌是一种致病真菌,它与数百种两栖动物物种的全球减少或灭绝有关。我们提出的基于模型的方法不仅在数据受到观测误差污染时有助于获得可靠的推断,而且还消除了建立隐藏和意外后果的任意阈值或决策规则的需要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验