Suppr超能文献

镧系元素导向的界面配位结构组装——从复杂网络到功能纳米系统。

Lanthanide-Directed Assembly of Interfacial Coordination Architectures-From Complex Networks to Functional Nanosystems.

机构信息

IMDEA Nanoscience , E-28049 Madrid, Spain.

Physik-Department E20, Technische Universität München , D-85748 Garching, Germany.

出版信息

Acc Chem Res. 2018 Feb 20;51(2):365-375. doi: 10.1021/acs.accounts.7b00379. Epub 2018 Feb 8.

Abstract

Metallo-supramolecular engineering on surfaces provides a powerful strategy toward low-dimensional coordination architectures with prospects for several application fields. To date, most efforts have relied on transition metal centers, and only recently did we pioneer lanthanide-directed assembly. Coordination spheres and motifs with rare-earth elements generally display distinct properties and structural features. The size of the cations and shielding role of the 4f orbitals induces high coordination numbers, frequently entailing flexible coordination geometries. Following Pearson's hard and soft acid-base theory, lanthanide cations are hard Lewis acids and thus feature strong affinity for nitrile, terpyridine, and carboxylate donor moieties. The prevailing oxidation state is +3, although in certain compounds stable +2 or +4 cations occur. The chemistry of rare-earth elements is currently receiving widespread attention, as they are key ingredients for established and emerging 21st century science and technology with relevance for energy conversion, sensing, catalysis, magnetism, photonics, telecommunications, superconductivity, biomedicine, and quantum engineering. In this Account, we review recent advances toward the design of interfacial supramolecular nanoarchitectures incorporating lanthanide centers. We apply controlled ultrahigh vacuum conditions whereby atomistically clean substrates are prepared and exposed to ultrapure atomic and molecular beams of the chosen sublimable constituents. We focus on direct molecular-level investigations and in situ assembly operative close to equilibrium conditions. Our scanning probe microscopy techniques provide atomistic insights regarding the formation, stability, and manipulability of metal-organic compounds and networks. In order to gain deeper insights into the experimental findings, complementary computational analysis of bond characteristics, electronic properties, and coordination motifs has been performed for several case studies. Exemplary elements under consideration include cerium, gadolinium, dysprosium, and europium. By the use of ditopic molecular linkers equipped with carbonitrile moieties, adaptive coordination spheres are unveiled, yielding vertices with two- to sixfold symmetry. The respective coordination nodes underlie the expression of complex networks, such as semiregular Archimedean tessellations for cerium- or gadolinium-directed assemblies and random-tiling quasicrystalline characteristics for europium. Tunability via constituent stoichiometry regulation is revealed for bimolecular arrangements embedding europium centers, simultaneously connecting to carbonitrile and terypyridine ligands. Ditopic carboxylate linkers yield robust reticular networks based on a lateral coordination number of 8 for either gadolinium or dysprosium complexation, featuring a prevalent ionic nature of the coordination bond. Orthogonal insertion protocols give rise to d-f reticular architectures exploiting macrocyclic tetradentate cobalt complexation and peripheral carbonitrile-gadolinium coordination, respectively. Furthermore, lanthanides may afford metalation of adsorbed free-base tetrapyrrole species and can be engaged for interfacial synthesis of sandwich compounds, thus providing prospects for columnar design of coordination architectures. Finally, direct manipulation experiments achieved lateral displacement of single supramolecules and molecular rotation of sandwich or other molecular units. These findings evidence prospects for advancing molecular machinery components. The presented accomplishements herald further advancements in metallo-supramolecular design on surfaces, with versatile nanosystems and architectures emanating from the flexible coordination spheres. The embedding and systematic rationalization of lanthanide centers in tailored interfacial environments are keys to establishing relations between structure and physicochemical characteristics toward the generation of novel functionalities with technological significance.

摘要

表面的金属超分子工程为具有多种应用前景的低维配位结构提供了一种强大的策略。迄今为止,大多数研究都依赖于过渡金属中心,直到最近我们才开创了镧系元素导向的组装。稀土元素的配位球和基元通常具有独特的性质和结构特征。阳离子的大小和 4f 轨道的屏蔽作用诱导出高配位数,通常需要灵活的配位几何形状。根据 Pearson 的硬软酸碱理论,镧系元素阳离子是硬路易斯酸,因此与腈、三联吡啶和羧酸盐供体部分具有很强的亲和力。通常存在的氧化态为+3,尽管在某些化合物中存在稳定的+2 或+4 阳离子。稀土元素的化学目前受到广泛关注,因为它们是建立和新兴的 21 世纪科学技术的关键组成部分,与能量转换、传感、催化、磁性、光子学、电信、超导、生物医学和量子工程有关。在本账目中,我们回顾了设计包含镧系元素中心的界面超分子纳米结构的最新进展。我们应用受控的超高真空条件,在原子清洁的基底上进行制备,并将其暴露于所选升华成分的超纯原子和分子束中。我们专注于直接分子水平的研究和接近平衡条件的原位组装。我们的扫描探针显微镜技术提供了关于金属有机化合物和网络的形成、稳定性和可操作性的原子见解。为了更深入地了解实验结果,我们对几个案例研究进行了键特性、电子性质和配位基元的互补计算分析。考虑的典型元素包括铈、钆、镝和铕。通过使用带有腈基的双位点分子接头,可以揭示自适应配位球,产生具有 2 到 6 重对称的顶点。相应的配位节点是复杂网络的基础,例如铈或钆导向组装的半规则阿基米德镶嵌和铕的随机镶嵌准晶特征。通过调节组成化学计量比,可以揭示同时连接到腈和三联吡啶配体的包含铕中心的双分子排列的可调谐性。双位点羧酸盐接头基于镧系元素配位的横向配位数为 8 ,产生基于配位键的离子特性,生成坚固的网状网络,用于镝或钆络合。正交插入方案导致利用大环四齿钴络合和外围腈-钆配位的 d-f 网状结构的产生。此外,镧系元素可以进行吸附的自由碱基四吡咯物种的金属化,并可用于界面三明治化合物的合成,从而为配位结构的柱状设计提供了前景。最后,实现了单个超分子的横向位移和三明治或其他分子单元的分子旋转的直接操纵实验。这些发现为推进分子机械部件提供了前景。所取得的成就预示着表面金属超分子设计的进一步发展,具有灵活的配位球衍生的多功能纳米系统和架构。镧系元素在定制界面环境中的嵌入和系统合理化是建立结构与物理化学特性之间关系的关键,以产生具有技术意义的新型功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验