Sánchez-Grande Ana, Urgel José I, García-Benito Inés, Santos José, Biswas Kalyan, Lauwaet Koen, Gallego José M, Rosen Johanna, Miranda Rodolfo, Björk Jonas, Martín Nazario, Écija David
IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, Madrid, 28049, Spain.
Departamento de Química Orgánica. Facultad de Ciencias Químicas, Universidad Complutense, Madrid, 28040, Spain.
Adv Sci (Weinh). 2022 Jul;9(19):e2200407. doi: 10.1002/advs.202200407. Epub 2022 May 22.
On-surface synthesis has recently emerged as a powerful strategy to design conjugated polymers previously precluded in conventional solution chemistry. Here, an N-containing pentacene-based precursor (tetraazapentacene) is ex-professo synthesized endowed with terminal dibromomethylene (:CBr ) groups to steer homocoupling via dehalogenation on metallic supports. Combined scanning probe microscopy investigations complemented by theoretical calculations reveal how the substrate selection drives different reaction mechanisms. On Ag(111) the dissociation of bromine atoms at room temperature triggers the homocoupling of tetraazapentacene units together with the binding of silver adatoms to the nitrogen atoms of the monomers giving rise to a N-containing conjugated coordination polymer (P1). Subsequently, P1 undergoes ladderization at 200 °C, affording a pyrrolopyrrole-bridged conjugated polymer (P2). On Au(111) the formation of the intermediate polymer P1 is not observed and, instead, after annealing at 100 °C, the conjugated ladder polymer P2 is obtained, revealing the crucial role of metal adatoms on Ag(111) as compared to Au(111). Finally, on Ag(100) the loss of :CBr2 groups affords the formation of tetraazapentacene monomers, which coexist with polymer P1. Our results contribute to introduce protocols for the synthesis of N-containing conjugated polymers, illustrating the selective role of the metallic support in the underlying reaction mechanisms.
表面合成最近已成为一种强大的策略,用于设计传统溶液化学中无法制备的共轭聚合物。在此,专业合成了一种含氮并五苯类前驱体(四氮杂并五苯),其带有末端二溴亚甲基(:CBr₂)基团,以通过在金属载体上的脱卤作用引导均偶联反应。结合扫描探针显微镜研究并辅以理论计算,揭示了底物选择如何驱动不同的反应机制。在Ag(111)上,室温下溴原子的解离触发了四氮杂并五苯单元的均偶联,同时银原子与单体的氮原子结合,生成一种含氮共轭配位聚合物(P1)。随后,P1在200°C下发生阶梯化,得到一种吡咯并吡咯桥连的共轭聚合物(P2)。在Au(111)上未观察到中间聚合物P1的形成,相反,在100°C退火后,得到了共轭阶梯聚合物P2,这揭示了与Au(111)相比,Ag(111)上金属原子的关键作用。最后,在Ag(100)上,:CBr₂基团的损失导致四氮杂并五苯单体的形成,其与聚合物P1共存。我们的结果有助于引入含氮共轭聚合物的合成方案,阐明了金属载体在潜在反应机制中的选择性作用。