Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain; Centro de Investigacion Biomedica en Red Cardiovascular (CIBERCV), Madrid, Spain.
Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; Centro de Investigacion Biomedica en Red Cardiovascular (CIBERCV), Madrid, Spain.
J Am Coll Cardiol. 2018 Feb 13;71(6):654-667. doi: 10.1016/j.jacc.2017.11.067.
In response to pressure overload, the heart develops ventricular hypertrophy that progressively decompensates and leads to heart failure. This pathological hypertrophy is mediated, among others, by the phosphatase calcineurin and is characterized by metabolic changes that impair energy production by mitochondria.
The authors aimed to determine the role of the calcineurin splicing variant CnAβ1 in the context of cardiac hypertrophy and its mechanism of action.
Transgenic mice overexpressing CnAβ1 specifically in cardiomyocytes and mice lacking the unique C-terminal domain in CnAβ1 (CnAβ1 mice) were used. Pressure overload hypertrophy was induced by transaortic constriction. Cardiac function was measured by echocardiography. Mice were characterized using various molecular analyses.
In contrast to other calcineurin isoforms, the authors show here that cardiac-specific overexpression of CnAβ1 in transgenic mice reduces cardiac hypertrophy and improves cardiac function. This effect is mediated by activation of serine and one-carbon metabolism, and the production of antioxidant mediators that prevent mitochondrial protein oxidation and preserve ATP production. The induction of enzymes involved in this metabolic pathway by CnAβ1 is dependent on mTOR activity. Inhibition of serine and one-carbon metabolism blocks the beneficial effects of CnAβ1. CnAβ1 mice show increased cardiac hypertrophy and declined contractility.
The metabolic reprogramming induced by CnAβ1 redefines the role of calcineurin in the heart and shows for the first time that activation of the serine and one-carbon pathway has beneficial effects on cardiac hypertrophy and function, paving the way for new therapeutic approaches.
在应对压力过载时,心脏会发生心室肥厚,进而逐渐失代偿并导致心力衰竭。这种病理性肥厚是由钙调磷酸酶等多种因素介导的,其特征是代谢变化,损害了线粒体的能量产生。
作者旨在确定钙调磷酸酶剪接变异体 CnAβ1 在心脏肥厚中的作用及其作用机制。
使用在心肌细胞中特异性过表达 CnAβ1 的转基因小鼠和缺乏 CnAβ1 独特 C 端结构域的小鼠(CnAβ1 小鼠)来进行研究。通过主动脉缩窄诱导压力超负荷性肥厚。通过超声心动图测量心功能。利用各种分子分析方法对小鼠进行特征分析。
与其他钙调磷酸酶同工型不同,作者在此表明,在转基因小鼠中心脏特异性过表达 CnAβ1 可减少心脏肥厚并改善心功能。这种作用是通过激活丝氨酸和一碳代谢以及产生抗氧化介质来介导的,抗氧化介质可防止线粒体蛋白氧化并维持 ATP 产生。CnAβ1 诱导的这种代谢途径中的酶的表达依赖于 mTOR 活性。丝氨酸和一碳代谢的抑制会阻断 CnAβ1 的有益作用。CnAβ1 小鼠表现出心脏肥厚增加和收缩功能下降。
CnAβ1 诱导的代谢重编程重新定义了钙调磷酸酶在心脏中的作用,并首次表明激活丝氨酸和一碳途径对心脏肥厚和功能具有有益作用,为新的治疗方法铺平了道路。