Suppr超能文献

EvoStruct-Sub:一种使用进化和结构特征的准确革兰氏阳性蛋白亚细胞定位预测器。

EvoStruct-Sub: An accurate Gram-positive protein subcellular localization predictor using evolutionary and structural features.

机构信息

Department of Computer Science and Engineering, United International University, Bangladesh.

School of Engineering and Physics, University of the South Pacific, Fiji; Institute for Integrated and Intelligent Systems, Griffith University, Australia; RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.

出版信息

J Theor Biol. 2018 Apr 14;443:138-146. doi: 10.1016/j.jtbi.2018.02.002. Epub 2018 Feb 5.

Abstract

Determining subcellular localization of proteins is considered as an important step towards understanding their functions. Previous studies have mainly focused solely on Gene Ontology (GO) as the main feature to tackle this problem. However, it was shown that features extracted based on GO is hard to be used for new proteins with unknown GO. At the same time, evolutionary information extracted from Position Specific Scoring Matrix (PSSM) have been shown as another effective features to tackle this problem. Despite tremendous advancement using these sources for feature extraction, this problem still remains unsolved. In this study we propose EvoStruct-Sub which employs predicted structural information in conjunction with evolutionary information extracted directly from the protein sequence to tackle this problem. To do this we use several different feature extraction method that have been shown promising in subcellular localization as well as similar studies to extract effective local and global discriminatory information. We then use Support Vector Machine (SVM) as our classification technique to build EvoStruct-Sub. As a result, we are able to enhance Gram-positive subcellular localization prediction accuracies by up to 5.6% better than previous studies including the studies that used GO for feature extraction.

摘要

确定蛋白质的亚细胞定位被认为是理解其功能的重要步骤。以前的研究主要仅关注基因本体论(GO)作为解决此问题的主要特征。然而,已经表明,基于 GO 提取的特征很难用于具有未知 GO 的新蛋白质。同时,从位置特异性评分矩阵(PSSM)中提取的进化信息已被证明是解决此问题的另一种有效特征。尽管在使用这些来源进行特征提取方面取得了巨大进展,但这个问题仍然没有得到解决。在这项研究中,我们提出了 EvoStruct-Sub,它结合了预测的结构信息和直接从蛋白质序列中提取的进化信息来解决这个问题。为此,我们使用了几种不同的特征提取方法,这些方法在亚细胞定位以及类似的研究中已经显示出了很有前途的效果,能够提取有效的局部和全局判别信息。然后,我们使用支持向量机(SVM)作为我们的分类技术来构建 EvoStruct-Sub。结果,我们能够将革兰氏阳性菌亚细胞定位预测的准确率提高多达 5.6%,优于包括使用 GO 进行特征提取的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验