Suppr超能文献

外泌体中非传统蛋白分泌的预测。

Prediction of unconventional protein secretion by exosomes.

机构信息

Laboratory of Immunomedicine, Department of Immunology, Faculty of Medicine, Complutense University of Madrid, Pza Ramón y Cajal, s/n, 28040, Madrid, Spain.

出版信息

BMC Bioinformatics. 2021 Jun 16;22(1):333. doi: 10.1186/s12859-021-04219-z.

Abstract

MOTIVATION

In eukaryotes, proteins targeted for secretion contain a signal peptide, which allows them to proceed through the conventional ER/Golgi-dependent pathway. However, an important number of proteins lacking a signal peptide can be secreted through unconventional routes, including that mediated by exosomes. Currently, no method is available to predict protein secretion via exosomes.

RESULTS

Here, we first assembled a dataset including the sequences of 2992 proteins secreted by exosomes and 2961 proteins that are not secreted by exosomes. Subsequently, we trained different random forests models on feature vectors derived from the sequences in this dataset. In tenfold cross-validation, the best model was trained on dipeptide composition, reaching an accuracy of 69.88% ± 2.08 and an area under the curve (AUC) of 0.76 ± 0.03. In an independent dataset, this model reached an accuracy of 75.73% and an AUC of 0.840. After these results, we developed ExoPred, a web-based tool that uses random forests to predict protein secretion by exosomes.

CONCLUSION

ExoPred is available for free public use at http://imath.med.ucm.es/exopred/ . Datasets are available at http://imath.med.ucm.es/exopred/datasets/ .

摘要

动机

在真核生物中,靶向分泌的蛋白质含有信号肽,使其能够通过传统的内质网/高尔基体依赖性途径进行。然而,大量缺乏信号肽的蛋白质可以通过非传统途径分泌,包括外泌体介导的途径。目前,尚无预测蛋白质通过外泌体分泌的方法。

结果

在这里,我们首先组装了一个数据集,其中包括 2992 种通过外泌体分泌的蛋白质的序列和 2961 种不通过外泌体分泌的蛋白质的序列。随后,我们在这个数据集的序列上训练了不同的随机森林模型。在十折交叉验证中,最好的模型是基于二肽组成训练的,准确率为 69.88%±2.08,曲线下面积(AUC)为 0.76±0.03。在一个独立的数据集上,该模型的准确率为 75.73%,AUC 为 0.840。在这些结果之后,我们开发了 ExoPred,这是一个基于随机森林的免费在线工具,用于预测蛋白质通过外泌体的分泌。

结论

ExoPred 可在 http://imath.med.ucm.es/exopred/ 免费公开使用。数据集可在 http://imath.med.ucm.es/exopred/datasets/ 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a6d/8210391/33cab5520ace/12859_2021_4219_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验