Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China.
Department of Materials Science and Engineering, College of Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, China.
Adv Mater. 2018 Mar;30(13):e1706083. doi: 10.1002/adma.201706083. Epub 2018 Feb 9.
Rapid progress in the power conversion efficiency (PCE) of polymer solar cells (PSEs) is beneficial from the factors that match the irradiated solar spectrum, maximize incident light absorption, and reduce photogenerated charge recombination. To optimize the device efficiency, a nanopatterned ZnO:Al O composite film is presented as an efficient light- and charge-manipulation layer (LCML). The Al O shells on the ZnO nanoparticles offer the passivation effect that allows optimal electron collection by suppressing charge-recombination loss. Both the increased refractive index and the patterned deterministic aperiodic nanostructure in the ZnO:Al O LCML cause broadband light harvesting. Highly efficient single-junction PSCs for different binary blends are obtained with a peak external quantum efficiency of up to 90%, showing certified PCEs of 9.69% and 13.03% for a fullerene blend of PTB7:PC BM and a nonfullerene blend, FTAZ:IDIC, respectively. Because of the substantial increase in efficiency, this method unlocks the full potential of the ZnO:Al O LCML toward future photovoltaic applications.
聚合物太阳能电池 (PSE) 的功率转换效率 (PCE) 的快速提高受益于以下因素:与辐照太阳光谱相匹配,最大限度地增加入射光吸收,减少光生电荷复合。为了优化器件效率,提出了一种纳米图案化 ZnO:Al O 复合薄膜作为高效的光和电荷管理层 (LCML)。ZnO 纳米颗粒上的 Al O 壳提供了钝化效应,通过抑制电荷复合损失,允许最佳的电子收集。ZnO:Al O LCML 中的高折射率和图案化确定性非周期性纳米结构导致宽带光捕获。对于不同二元混合物,获得了高效的单结 PSCs,其峰值外量子效率高达 90%,对于富勒烯混合物 PTB7:PC BM 和非富勒烯混合物 FTAZ:IDIC,分别显示出经过认证的 PCE 为 9.69%和 13.03%。由于效率的大幅提高,这种方法充分发挥了 ZnO:Al O LCML 在未来光伏应用中的潜力。