Suppr超能文献

功能化石墨炔膜用于海水淡化的原子和连续体尺度建模。

Atomistic and continuum scale modeling of functionalized graphyne membranes for water desalination.

机构信息

Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.

出版信息

Nanoscale. 2018 Feb 22;10(8):3969-3980. doi: 10.1039/c7nr07963j.

Abstract

Recent theoretical and experimental studies reported ultra-high water permeability and salt rejection in nanoporous single-layer graphene. However, creating and controlling the size and distribution of nanometer-scale pores pose significant challenges to application of these membranes for water desalination. Graphyne and hydrogenated graphyne have tremendous potential as ultra-permeable membranes for desalination and wastewater reclamation due to their uniform pore-distribution, atomic thickness and mechano-chemical stability. Using molecular dynamics (MD) simulations and upscale continuum analysis, the desalination performance of bare and hydrogenated α-graphyne and γ-{2,3,4}-graphyne membranes is evaluated as a function of pore size, pore geometry, chemical functionalization and applied pressure. MD simulations show that pores ranging from 20 to 50 Å reject in excess of 90% of the ions for pressures up to 1 GPa. Water permeability is found to range up to 85 L cm day MPa, which is up to three orders of magnitude larger than commercial seawater reverse osmosis (RO) membranes and up to ten times that of nanoporous graphene. Pore chemistry, functionalization and geometry are shown to play a critical role in modulating the water flux, and these observations are explained by water velocity, density, and energy barriers in the pores. The atomistic scale investigations are complemented by upscale continuum analysis to examine the performance of these membranes in application to cross-flow RO systems. This upscale analysis, however, shows that the significant increase in permeability, observed from MD simulations, does not fully translate to current RO systems due to transport limitations. Nevertheless, upscale calculations predict that the higher permeability of graphyne membranes would allow up to six times higher permeate recovery or up to 6% less energy consumption as compared to thin-film composite membranes at currently accessible operating conditions. Significantly higher energy savings and permeate recovery can be achieved if higher feed-flow rates can be realized.

摘要

最近的理论和实验研究报道了在纳米多孔单层石墨烯中具有超高水透过率和盐排斥性。然而,创建和控制纳米级孔的大小和分布对这些膜在海水淡化中的应用提出了重大挑战。由于具有均匀的孔径分布、原子厚度和机械化学稳定性,氢化石墨炔和石墨炔在海水淡化和废水回收方面具有巨大的应用潜力,可作为超高渗透膜。使用分子动力学 (MD) 模拟和上尺度连续体分析,评估了裸和氢化α-石墨炔和γ-{2,3,4}-石墨炔膜的脱盐性能,作为孔径、孔径几何形状、化学功能化和应用压力的函数。MD 模拟表明,在高达 1 GPa 的压力下,直径为 20 至 50 Å 的孔可排斥超过 90%的离子。发现水渗透率高达 85 L cm day MPa,比商业海水反渗透 (RO) 膜高三个数量级,比纳米多孔石墨烯高十倍。结果表明,孔径化学、功能化和几何形状在调节水通量方面起着关键作用,这些观察结果可以通过孔中的水速度、密度和能量障碍来解释。原子尺度的研究通过上尺度连续体分析来补充,以研究这些膜在横流 RO 系统中的应用性能。然而,这种上尺度分析表明,由于传输限制,从 MD 模拟中观察到的渗透率的显著增加并不能完全转化为当前的 RO 系统。尽管如此,上尺度计算预测,与薄膜复合膜相比,在当前可达到的操作条件下,石墨炔膜的更高渗透率将允许透水量回收率提高六倍或能耗降低 6%。如果可以实现更高的进料流速,则可以实现更高的节能和透水量回收率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验