Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
Colleges of Medicine and Pharmacy, Alfaisal University, Riyadh, Kingdom of Saudi Arabia.
Am J Hypertens. 2018 May 7;31(6):696-705. doi: 10.1093/ajh/hpy021.
The renin-angiotensin system, in particular Angiotensin II (AngII), plays a significant role in the pathogenesis of hypertension in chronic kidney disease (CKD). Effects of chronic AT1 receptor antagonism were investigated in a genetic hypertensive rat model of CKD, the Lewis polycystic kidney (LPK) rat.
Mixed-sex LPK and Lewis control rats (total n = 31) were split between treated (valsartan 60 mg/kg/day p.o. from 4 to 18 weeks) and vehicle groups. Animals were assessed for systolic blood pressure and urine biochemistry, and after euthanasia, blood collected for urea and creatinine analysis, confirming the hypertensive and renal phenotype. Mesenteric resistance vasculature was assessed using pressure myography and histology.
Valsartan treatment improved vascular structure in LPK rats, increasing internal and external diameter values and reducing wall thickness (untreated vs. treated LPK: 53.19 ± 3.29 vs. 33.93 ± 2.17 μm) and wall-lumen ratios (untreated vs. treated LPK: 0.52 ± 0.09 vs. 0.16 ± 0.01, all P < 0.0001). Endothelium dysfunction, as measured by maximal response to acetylcholine (Rmax), was normalized with treatment (untreated vs. treated LPK: 69.56 ± 4.34 vs. 103.05 ± 4.13, P < 0.05), increasing the relative contributions of nitric oxide and endothelium-derived hyperpolarization to vasorelaxation while downregulating the prostanoid contribution. Biomechanical properties also improved with treatment, as indicated by an increase in compliance, decrease in intrinsic stiffness and alterations in the artery wall composition, which included decreases in collagen density and collagen/elastin ratio.
Our results highlight the importance of AngII as a driver of resistance vessel structural, functional, and biomechanical dysfunction and provide insight as to how AT1 receptor blockade exerts therapeutic efficacy in CKD.
肾素-血管紧张素系统,尤其是血管紧张素 II(AngII),在慢性肾脏病(CKD)中的高血压发病机制中起着重要作用。在 CKD 的遗传高血压大鼠模型中,即 Lewis 多囊肾病(LPK)大鼠中,研究了慢性 AT1 受体拮抗作用的效果。
将雌雄混合的 LPK 和 Lewis 对照大鼠(共 31 只)分为治疗组(4 至 18 周时每天口服缬沙坦 60mg/kg)和对照组。评估动物的收缩压和尿液生化,安乐死后采集血液用于尿素和肌酐分析,确认高血压和肾脏表型。使用压力血管造影术和组织学评估肠系膜阻力血管的结构。
缬沙坦治疗改善了 LPK 大鼠的血管结构,增加了内、外径值,减少了壁厚度(未治疗的 LPK 与治疗的 LPK:53.19 ± 3.29μm 与 33.93 ± 2.17μm)和壁腔比(未治疗的 LPK 与治疗的 LPK:0.52 ± 0.09 与 0.16 ± 0.01,均 P<0.0001)。用乙酰胆碱(Rmax)测量的内皮功能障碍通过治疗得到了正常化(未治疗的 LPK 与治疗的 LPK:69.56 ± 4.34μm 与 103.05 ± 4.13μm,P<0.05),增加了一氧化氮和内皮衍生超极化对血管舒张的相对贡献,同时下调了前列腺素的贡献。治疗还改善了生物力学特性,表现为顺应性增加、固有硬度降低以及动脉壁成分改变,包括胶原密度和胶原/弹性蛋白比值降低。
我们的结果强调了 AngII 作为阻力血管结构、功能和生物力学功能障碍驱动因素的重要性,并提供了有关 AT1 受体阻断如何在 CKD 中发挥治疗效果的见解。