Suppr超能文献

Constructing regions of attainable sizes and achieving target size distribution in a batch cooling sonocrystallization process.

作者信息

Bhoi Stutee, Sarkar Debasis

机构信息

Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.

Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.

出版信息

Ultrason Sonochem. 2018 Apr;42:162-170. doi: 10.1016/j.ultsonch.2017.11.017. Epub 2017 Nov 14.

Abstract

The application of ultrasound to a crystallization process has several interesting benefits. The temperature of the crystallizer increases during ultrasonication and this makes it difficult for the temperature controller of the crystallizer to track a set temperature trajectory precisely. It is thus necessary to model this temperature rise and the temperature-trajectory tracking ability of the crystallizer controller to perform model-based dynamic optimization for a given cooling sonocrystallization set-up. In our previous study, we reported a mathematical model based on population balance framework for a batch cooling sonocrystallization of l-asparagine monohydrate (LAM). Here we extend the previous model by including energy balance equations and a Generic Model Control algorithm to simulate the temperature controller of the crystallizer that tracks a cooling profile during crystallization. The improved model yields very good closed-loop prediction and is conveniently used for studies related to particle engineering by optimization. First, the model is used to determine the regions of attainable particle sizes for LAM batch cooling sonocrystallization process by solving appropriate dynamic optimization problems. Then the model is used to determine optimal operating conditions for achieving a target crystal size distribution. The experimental evidence clearly demonstrates the efficiency of the particle engineering approach by optimization.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验