Departamento de Genética. Facultad de Biología, Universidad Complutense, 28040, Madrid, Spain.
Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, United Kingdom.
Heredity (Edinb). 2018 Jul;121(1):38-51. doi: 10.1038/s41437-017-0045-y. Epub 2018 Feb 13.
The consequences of inbreeding for fitness are important in evolutionary and conservation biology, but can critically depend on genetic purging. However, estimating purging has proven elusive. Using PURGd software, we assess the performance of the Inbreeding-Purging (IP) model and of ancestral inbreeding (F) models to detect purging in simulated pedigreed populations, and to estimate parameters that allow reliably predicting the evolution of fitness under inbreeding. The power to detect purging in a single small population of size N is low for both models during the first few generations of inbreeding (t ≈ N/2), but increases for longer periods of slower inbreeding and is, on average, larger for the IP model. The ancestral inbreeding approach overestimates the rate of inbreeding depression during long inbreeding periods, and produces joint estimates of the effects of inbreeding and purging that lead to unreliable predictions for the evolution of fitness. The IP estimates of the rate of inbreeding depression become downwardly biased when obtained from long inbreeding processes. However, the effect of this bias is canceled out by a coupled downward bias in the estimate of the purging coefficient so that, unless the population is very small, the joint estimate of these two IP parameters yields good predictions of the evolution of mean fitness in populations of different sizes during periods of different lengths. Therefore, our results support the use of the IP model to detect inbreeding depression and purging, and to estimate reliable parameters for predictive purposes.
近亲繁殖对适合度的影响在进化和保护生物学中很重要,但关键取决于遗传净化。然而,估计净化效果一直是个难题。我们使用 PURGd 软件,评估了近亲繁殖-净化(IP)模型和祖先近亲繁殖(F)模型在模拟有系谱的种群中检测净化的效果,并估计了可用于可靠预测近亲繁殖下适合度进化的参数。对于这两个模型,在近亲繁殖的最初几代(t ≈ N/2)中,单个小种群(N 大小)检测净化的能力都很低,但随着更长时间的缓慢近亲繁殖而增加,并且平均而言,IP 模型的能力更强。祖先近亲繁殖方法在长时间近亲繁殖期间高估了近亲繁殖衰退的速度,并产生了近亲繁殖和净化效果的联合估计,导致对适合度进化的不可靠预测。当从长时间的近亲繁殖过程中获得时,IP 估计的近亲繁殖衰退速度会产生向下偏差。然而,这种偏差的影响被净化系数的耦合向下偏差所抵消,因此,除非种群非常小,否则这两个 IP 参数的联合估计可以很好地预测不同大小的种群在不同长度的时间内的平均适合度进化。因此,我们的结果支持使用 IP 模型来检测近亲繁殖衰退和净化,并估计预测目的的可靠参数。