Sinervo Barry, Miles Donald B, Wu Yayong, Méndez-DE LA Cruz Fausto R, Kirchhof Sebastian, Qi Yin
The Institute for the Study of the Ecological and Evolutionary Climate Impacts, University of California, and Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, USA.
Department of Biological Sciences, Ohio University, Athens, Ohio, USA.
Integr Zool. 2018 Jul;13(4):450-470. doi: 10.1111/1749-4877.12315.
Determining the susceptibility of species to changing thermal niches is a major goal for biologists. In this paper we develop an eco-physiological model of extinction risk under climate change premised on behavioral thermoregulation. Our method downscales operative environmental temperatures, which restrict hours of activity of lizards, h , for present-day climate (1975) and future climate scenarios (2070). We apply our model using occurrence records of 20 Phrynocephalus lizards (or taxa in species complexes) drawn from literature and museum records. Our analysis is phylogenetically informed, because some clades may be more sensitive to rising temperatures. The limits for computed h predict local extirpations among Phrynocephalus lizards at continental scales and delineate upper boundaries of thermal niches as defined by Extreme Value Distributions. Under the 8.5 Representative Concentration Pathway scenario, we predict extirpation of 64% of local populations by 2070 across 20 Phrynocephalus species, and 12 are at high risk of total extinction due to thermal limits being exceeded. In tandem with global strategies of lower CO emissions, we propose regional strategies for establishing new national parks to protect extinction-prone taxa by preserving high-elevation climate refugia within existing sites of species occurrence. We propose that evolved acclimatization - maternal plasticity - may ameliorate risk, but is poorly studied. Previous studies revealed that adaptive maternal plasticity by thermoregulating gravid females alter progeny thermal preferences by ±1 °C. We describe plasticity studies for extinction-prone species that could assess whether they might be buffered from climate warming - a self-rescue. We discuss an epigenetic framework for studying such maternal-effect evolution.
确定物种对不断变化的热生态位的敏感性是生物学家的一个主要目标。在本文中,我们基于行为体温调节建立了一个气候变化下灭绝风险的生态生理模型。我们的方法将限制蜥蜴活动时间的有效环境温度进行了降尺度处理,分别针对当前气候(1975年)和未来气候情景(2070年)。我们使用从文献和博物馆记录中提取的20种沙蜥(或物种复合体中的分类单元)的出现记录来应用我们的模型。我们的分析考虑了系统发育,因为一些进化枝可能对气温上升更敏感。计算得出的活动时间限制预测了大陆尺度下沙蜥的局部灭绝情况,并划定了由极值分布定义的热生态位的上限。在代表性浓度路径8.5情景下,我们预测到2070年,20种沙蜥中64%的当地种群将灭绝,其中12种因超过热极限而面临完全灭绝的高风险。与全球降低碳排放的战略相结合,我们提出了区域战略,即通过在现有物种出现地点内保护高海拔气候避难所来建立新的国家公园,以保护易灭绝的分类单元。我们提出,进化而来的适应性——母体可塑性——可能会降低风险,但对此研究甚少。先前的研究表明,通过调节体温的怀孕雌性的适应性母体可塑性会使后代的热偏好改变±1°C。我们描述了针对易灭绝物种的可塑性研究,这些研究可以评估它们是否能够从气候变暖中得到缓冲——一种自救。我们讨论了一个用于研究这种母体效应进化的表观遗传框架。