Suppr超能文献

由CoP/碳纳米管或石墨烯构建的用于可见光驱动CO还原的高效光催化体系。

Highly Efficient Photocatalytic System Constructed from CoP/Carbon Nanotubes or Graphene for Visible-Light-Driven CO Reduction.

作者信息

Fu Zi-Cheng, Xu Rong-Chen, Moore Joshua T, Liang Fei, Nie Xiao-Cun, Mi Chen, Mo Jiang, Xu Yong, Xu Quan-Qing, Yang Zhi, Lin Zhe-Shuai, Fu Wen-Fu

机构信息

Key Laboratory of Photochemical Conversion and Optoelectronic, Materials and HKU-CAS Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

Department of Chemistry, Tennessee State University, 3500 John A. Merritt Blvd., Nashville, TN, 37209, USA.

出版信息

Chemistry. 2018 Mar 20;24(17):4273-4278. doi: 10.1002/chem.201800335. Epub 2018 Feb 28.

Abstract

Visible-light-driven conversion of CO to CO and high-value-added carbon products is a promising strategy for mitigating CO emissions and reserving solar energy in chemical form. We report an efficient system for CO transformation to CO catalyzed by bare CoP, hybrid CoP/carbon nanotubes (CNTs), and CoP/reduced graphene oxide (rGO) in mixed aqueous solutions containing a Ru-based photosensitizer, under visible-light irradiation. The in situ prepared hybrid catalysts CoP/CNT and CoP/rGO show excellent catalytic activities in CO reduction to CO, with a catalytic rates of up to 39 510 and 47 330 μmol h  g in the first 2 h of reaction, respectively; a high CO selectivity of 73.1 % for the former was achieved in parallel competing reactions in the photoreduction of CO and H O. A combination of experimental and computational studies clearly shows that strong interactions between CoP and carbon-supported materials and partially adsorbed H O molecules on the catalyst surface significantly improve CO-generating rates.

摘要

可见光驱动的一氧化碳转化为一氧化碳和高附加值碳产品是减少一氧化碳排放并以化学形式储存太阳能的一种很有前景的策略。我们报道了一种高效体系,在含有钌基光敏剂的混合水溶液中,通过可见光照射,由裸钴磷、钴磷/碳纳米管(CNTs)杂化物以及钴磷/还原氧化石墨烯(rGO)催化将一氧化碳转化为一氧化碳。原位制备的杂化催化剂钴磷/碳纳米管和钴磷/还原氧化石墨烯在一氧化碳还原为一氧化碳的反应中表现出优异的催化活性,在反应的前2小时催化速率分别高达39510和47330 μmol·h⁻¹·g⁻¹;在一氧化碳和水的光还原平行竞争反应中,前者实现了73.1%的高一氧化碳选择性。实验和计算研究相结合清楚地表明,钴磷与碳负载材料之间的强相互作用以及催化剂表面部分吸附的水分子显著提高了一氧化碳生成速率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验