Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
J Virol. 2018 Apr 13;92(9). doi: 10.1128/JVI.00084-18. Print 2018 May 1.
Many viral envelope proteins are modified by asparagine (N)-linked glycosylation, which can influence their structure, physicochemical properties, intracellular transport, and function. Here, we systematically analyzed the functional relevance of N-linked glycans in the alphaherpesvirus pseudorabies virus (PrV) glycoprotein H (gH), which is an essential component of the conserved core herpesvirus fusion machinery. Upon gD-mediated receptor binding, the heterodimeric complex of gH and gL activates gB to mediate fusion of the viral envelope with the host cell membrane for viral entry. gH contains five potential N-linked glycosylation sites at positions 77, 162, 542, 604, and 627, which were inactivated by conservative mutations (asparagine to glutamine) singly or in combination. The mutated proteins were tested for correct expression and fusion activity. Additionally, the mutated gH genes were inserted into the PrV genome for analysis of function during virus infection. Our results demonstrate that all five sites are glycosylated. Inactivation of the PrV-specific N77 or the conserved N627 resulted in significantly reduced fusion activity, delayed penetration kinetics, and smaller virus plaques. Moreover, substitution of N627 greatly affected transport of gH in transfected cells, resulting in endoplasmic reticulum (ER) retention and reduced surface expression. In contrast, mutation of N604, which is conserved in the genus, resulted in enhanced fusion activity and viral cell-to-cell spread. These results demonstrate a role of the N-glycans in proper localization and function of PrV gH. However, even simultaneous inactivation of all five N-glycosylation sites of gH did not severely inhibit formation of infectious virus particles. Herpesvirus infection requires fusion of the viral envelope with cellular membranes, which involves the conserved fusion machinery consisting of gB and the heterodimeric gH/gL complex. The bona fide fusion protein gB depends on the presence of the gH/gL complex for activation. Viral envelope glycoproteins, such as gH, usually contain N-glycans, which can have a strong impact on their folding, transport, and functions. Here, we systematically analyzed the functional relevance of all five predicted N-linked glycosylation sites in the alphaherpesvirus pseudorabies virus (PrV) gH. Despite the fact that mutation of specific sites affected gH transport, fusion activity, and cell-to-cell spread and resulted in delayed penetration kinetics, even simultaneous inactivation of all five N-glycosylation sites of gH did not severely inhibit formation of infectious virus particles. Thus, our results demonstrate a modulatory but nonessential role of N-glycans for gH function.
许多病毒包膜蛋白通过天冬酰胺(N)-连接糖基化修饰,这可以影响其结构、理化性质、细胞内运输和功能。在这里,我们系统地分析了α疱疹病毒伪狂犬病病毒 (PrV) 糖蛋白 H (gH) 中 N 连接糖基化的功能相关性,gH 是保守的核心疱疹病毒融合机制的必需组成部分。在 gD 介导的受体结合后,gH 和 gL 的异二聚体复合物激活 gB 介导病毒包膜与宿主细胞膜融合以实现病毒进入。gH 在位置 77、162、542、604 和 627 处包含五个潜在的 N-连接糖基化位点,这些位点通过单独或组合的保守突变(天冬酰胺到谷氨酰胺)失活。测试了突变蛋白的正确表达和融合活性。此外,将突变的 gH 基因插入 PrV 基因组中,以分析病毒感染过程中的功能。我们的结果表明所有五个位点都被糖基化。PrV 特异性 N77 或保守 N627 的失活导致融合活性显著降低、渗透动力学延迟和病毒斑更小。此外,N627 的取代极大地影响了转染细胞中 gH 的运输,导致内质网 (ER) 滞留和表面表达减少。相比之下,在属中保守的 N604 突变导致融合活性增强和病毒细胞间传播。这些结果表明 N-糖基化在 PrV gH 的正确定位和功能中起作用。然而,即使 gH 的所有五个 N-糖基化位点同时失活也不会严重抑制感染性病毒颗粒的形成。疱疹病毒感染需要病毒包膜与细胞膜融合,这涉及由 gB 和异二聚体 gH/gL 复合物组成的保守融合机制。真正的融合蛋白 gB 依赖于 gH/gL 复合物的存在来激活。包膜糖蛋白,如 gH,通常含有 N-糖基化,这对其折叠、运输和功能有很大影响。在这里,我们系统地分析了α疱疹病毒伪狂犬病病毒 (PrV) gH 中所有五个预测的 N-连接糖基化位点的功能相关性。尽管特定位点的突变影响了 gH 的运输、融合活性和细胞间传播,并导致渗透动力学延迟,但即使 gH 的所有五个 N-糖基化位点同时失活也不会严重抑制感染性病毒颗粒的形成。因此,我们的结果表明 N-糖基化对 gH 功能具有调节而非必需的作用。