Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore Maryland.
Department of Radiation Oncology, School of Medicine, Johns Hopkins University, Baltimore Maryland.
J Nucl Med. 2018 Aug;59(8):1281-1288. doi: 10.2967/jnumed.117.203893. Epub 2018 Feb 9.
The data that have been used in almost all calculations of MIRD S value absorbed dose and effective dose are based on stylized anatomic computational phantoms and tissue-weighting factors adopted by the International Commission on Radiological Protection (ICRP) in its publication 60. The more anatomically realistic phantoms that have recently become available are likely to provide more accurate effective doses for diagnostic agents. Ga-DOTATATE is a radiolabeled somatostatin analog that binds with high affinity to somatostatin receptors, which are overexpressed in neuroendocrine tumors and can be used for diagnostic PET/CT-based imaging. Several studies have reported effective doses for Ga-DOTATATE using the stylized Cristy-Eckerman (CE) phantoms from 1987; here, we present effective dose calculations using both the ICRP 60 and more updated formalisms. Whole-body PET/CT scans were acquired for 16 patients after Ga-DOTATATE administration. Contours were drawn on the CT images for spleen, liver, kidneys, adrenal glands, brain, heart, lungs, thyroid gland, salivary glands, testes, red marrow (L1-L5), muscle (right thigh), and whole body. Dosimetric calculations were based on the CE phantoms and the more recent ICRP 110 reference-voxel phantoms. Tissue-weighting factors from ICRP 60 and ICRP 103 were used in effective dose calculations for the CE phantoms and ICRP 110 phantoms, respectively. The highest absorbed dose coefficients (absorbed dose per unit activity) were, in descending order, in the spleen, pituitary gland, kidneys, adrenal glands, and liver. For ICRP 110 phantoms with tissue-weighting factors from ICRP 103, the effective dose coefficient was 0.023 ± 0.003 mSv/MBq, which was significantly lower than the 0.027 ± 0.005 mSv/MBq calculated for CE phantoms with tissue-weighting factors from ICRP 60. One of the largest differences in estimated absorbed dose coefficients was for the urinary bladder wall, at 0.040 ± 0.011 mGy/MBq for ICRP 110 phantoms compared with 0.090 ± 0.032 mGy/MBq for CE phantoms. This study showed that the effective dose coefficient was slightly overestimated for CE phantoms, compared with ICRP 110 phantoms using the latest tissue-weighting factors from ICRP 103. The more detailed handling of electron transport in the latest phantom calculations gives significant differences in estimates of the absorbed dose to stem cells in the walled organs of the alimentary tract.
几乎所有 MIRD S 值吸收剂量和有效剂量计算中使用的数据都基于国际辐射防护委员会 (ICRP) 在其出版物 60 中采用的规范化解剖计算体模和组织权重因子。最近出现的更具解剖学真实性的体模可能为诊断剂提供更准确的有效剂量。Ga-DOTATATE 是一种放射性标记的生长抑素类似物,与生长抑素受体具有高亲和力,生长抑素受体在神经内分泌肿瘤中过度表达,可用于基于 PET/CT 的诊断成像。几项研究使用 1987 年的 Cristy-Eckerman (CE) 体模报告了 Ga-DOTATATE 的有效剂量;在这里,我们使用 ICRP 60 和更新的公式报告了有效剂量计算。 在 Ga-DOTATATE 给药后,对 16 名患者进行了全身 PET/CT 扫描。在 CT 图像上绘制了脾脏、肝脏、肾脏、肾上腺、大脑、心脏、肺、甲状腺、唾液腺、睾丸、红骨髓 (L1-L5)、肌肉(右大腿)和全身的轮廓。剂量计算基于 CE 体模和最近的 ICRP 110 参考体素体模。在 CE 体模和 ICRP 110 体模的有效剂量计算中,分别使用了 ICRP 60 和 ICRP 103 的组织权重因子。 按降序排列,吸收剂量最高的剂量系数(单位活度的吸收剂量)依次为脾脏、垂体、肾脏、肾上腺和肝脏。对于使用 ICRP 103 组织权重因子的 ICRP 110 体模,有效剂量系数为 0.023 ± 0.003 mSv/MBq,明显低于使用 ICRP 60 组织权重因子的 CE 体模计算的 0.027 ± 0.005 mSv/MBq。估计吸收剂量系数差异最大的是膀胱壁,使用 ICRP 110 体模为 0.040 ± 0.011 mGy/MBq,而使用 CE 体模为 0.090 ± 0.032 mGy/MBq。 本研究表明,与使用 ICRP 103 的最新组织权重因子的 ICRP 110 体模相比,CE 体模的有效剂量系数略有高估。在最新的体模计算中,对电子输运的更详细处理会导致消化道壁器官中的干细胞吸收剂量估计值存在显著差异。